[1] E. Batuecas, F. Liendo, T. Tommasi, S. Bensaid, F. Deorsola, D. Fino, Recycling CO2 from flue gas for CaCO3 nanoparticles production as cement filler: A Life Cycle Assessment, Journal of CO2 Utilization 45 (2021) 101446.
[2] L. Poudyal, K. Adhikari, M. Won, Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash, Materials 14(13) (2021) 3729.
[3] Y. Cheng, H. Han, C. Fang, H. Li, Z. Huang, J. Su, Preparation and properties of nano‐CaCO3/waste polyethylene/styrene‐butadiene‐styrene block polymer‐modified asphalt, Polymer Composites 41(2) (2020) 614-623.
[4] Z. Li, T. Guo, Y. Chen, Q. Liu, Y. Chen, The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt, Nanotechnology Reviews 10(1) (2021) 1253-1265.
[5] S. Lv, S. Wang, T. Guo, C. Xia, J. Li, G. Hou, Laboratory evaluation on performance of compound-modified asphalt for rock asphalt/styrene–butadiene rubber (sbr) and rock asphalt/nano-CaCO3, Applied Sciences 8(6) (2018) 1009.
[6] C. Wu, L. Li, W. Wang, Z. Gu, Experimental characterization of viscoelastic behaviors of nano-tio2/caco3 modified asphalt and asphalt mixture, Nanomaterials 11(1) (2021) 106.
[7] X. Xing, J. Pei, C. Shen, R. Li, J. Zhang, J. Huang, D. Hu, Performance and reinforcement mechanism of modified asphalt binders with nano-particles, whiskers, and fibers, Applied Sciences 9(15) (2019) 2995.
[8] R. Zhai, L. Ge, Y. Li, The effect of nano-CaCO3/styrene–butadiene rubber (SBR) on fundamental characteristic of hot mix asphalt, Road Materials and Pavement Design 21(4) (2020) 1006-1026.
[9] Rezazadeh Eidgahee D, Jahangir H, Solatifar N, Fakharian P, Rezaeemanesh M. (2022). Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Comput Appl 2022.
https://doi.org/10.1007/s00521-022-07382-3.
[10] Mathi KK, Nallasivam K. Dynamic and Fatigue Life Prediction Analysis of Airfield Runway Rigid Pavement Using Finite Element Method. Comput Eng Phys Model 2022;5:1–23. https://doi.org/10.22115/cepm.2022.347999.1215.
[11] A.M. Yarahmadi, G. Shafabakhsh, A. Asakereh, Laboratory investigation of the effect of nano Caco3 on rutting and fatigue of stone mastic asphalt mixtures, Construction and Building Materials 317 (2022) 126127.
[12] A. Al-Sabaeei, M. Napiah, M. Sutanto, N.Z. Habib, N. Bala, I. Kumalasari, A. Ghaleb, Application of nano silica particles to improve high-temperature rheological performance of tyre pyrolysis oil-modified bitumen, Road Materials and Pavement Design (2021) 1-19.
[13] K. Zhong, Z. Li, J. Fan, G. Xu, X. Huang, Effect of Carbon Black on Rutting and Fatigue Performance of Asphalt, Materials 14(9) (2021) 2383.
[14] J. Huang, G. Shiva Kumar, J. Ren, Y. Sun, Y. Li, C. Wang, Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties, International Journal of Pavement Engineering (2021) 1-13.
[15] A.M. Al-Sabaeei, M.B. Napiah, M.H. Sutanto, W.S. Alaloul, N.I.M. Yusoff, F.H. Khairuddin, A.M. Memon, Evaluation of the high-temperature rheological performance of tire pyrolysis oil-modified bio-asphalt, International Journal of Pavement Engineering (2021) 1-16.
[16] F.S. Bhat, M.S. Mir, Investigating the effects of nano Al2O3 on high and intermediate temperature performance properties of asphalt binder, Road Materials and Pavement Design 22(11) (2021) 2604-2625.
[17] G.A. Shafabakhsh, M. Sadeghnejad, B. Ahoor, E. Taheri, Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen, Construction and Building Materials 237 (2020) 117640.
[18] F. Moghadas Nejad, E. Geraee, A.R. Azarhoosh, The effect of nano calcium carbonate on the dynamic behaviour of asphalt concrete mixture, European Journal of Environmental and Civil Engineering 24(8) (2020) 1219-1228.
[19] M. Motamedi, G. Shafabakhsh, M. Azadi, Evaluating fatigue-damage of asphalt binder and mastic modified with nano-silica and synthesized polyurethane using VECD method, Journal of Materials in Civil Engineering 32(8) (2020) 04020218.
[20] G. Shafabakhsh, M. Aliakbari Bidokhti, H. Divandari, Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature, Road Materials and Pavement Design (2020) 1-15.
[21] S.A. Ghanoon, J. Tanzadeh, Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder, Construction and Building Materials 223 (2019) 1074-1082.
[22] J. Li, S. Yang, Y. Liu, Y. Muhammad, Z. Su, J. Yang, Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt, Construction and Building Materials 218 (2019) 413-423.
[23] A. Akbari, A. Modarres, Evaluating the effect of nano-clay and nano-alumina on the fatigue response of bitumen using strain and time sweep tests, International Journal of Fatigue 114 (2018) 311-322.
[24] A.K. Arshad, M.S. Samsudin, K.A. Masri, M.R. Karim, A.A. Halim, Multiple stress creep and recovery of nanosilica modified asphalt binder, MATEC Web of Conferences, EDP Sciences, 2017, p. 09005.
[25] Y.-F. López-Contreras, A. Chaves-Guerrero, M. Akbulut, Z. Cheng, L.-J. Hoyos-Marín, Adhesion forces in asphalt mixtures at nanoscale, CT&F-Ciencia, Tecnología y Futuro 7(1) (2017) 59-72.
[26] W. Huang, N. Tang, Characterizing SBS modified asphalt with sulfur using multiple stress creep recovery test, Construction and Building Materials 93 (2015) 514-521.
[27] G. Vasilievici, D. Bombos, M. Bombos, R. Gabor, C. Nicolae, Asphalt nanocomposite based on calcium carbonate, Materiale Plastice 50(3) (2013) 220-224.
[28] R.B.M.a.T. El-Korchi, Pavement Engineering Principles and Practice, 3rd edition ed., CRC Press2017.
[29] P.D. Y. Richard Kim, P.E., Modelling of Asphalt Concrete, 1st Edition ed., McGraw-Hill Education; 1st edition2008.
[30] A. Ghadami Jadval Ghadam, M. Idrees, Characterization of CaCO3 nanoparticles synthesized by reverse microemulsion technique in different concentrations of surfactants, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 32(3) (2013) 27-35.
[31] M. Sadeghnejad, G. Shafabakhsh, Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures, Construction and Building Materials 157 (2017) 965-974.
[32] S.A. Ghanoon, J. Tanzadeh, M. Mirsepahi, Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder, Construction and Building Materials 238 (2020) 117592.
[33] I.G.d.N. Camargo, B. Hofko, J. Mirwald, H. Grothe, Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition, Materials 13(19) (2020) 4438.
[34] AASHTO, T240, Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test), American Association of State and Highway Transportation Officials (2021).
[35] AASHTO, R28, Standard Method of Test for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV) American Association of State and Highway Transportation Officials (2021).
[36] AASHTO, T350-14, Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), American Association of State and Highway Transportation Officials (2014).
[37] AASHTO, TP 101-12, Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep, American Association of State and Highway Transportation Officials (2018).