Laboratory Evaluation of Fatigue and Rutting Performance of Nano CaCO3 Modified Asphalt Binders

Document Type : Regular Paper

Authors

1 M.Sc., Faculty of Civil Engineering, Semnan University, Semnan, Iran

2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

3 Assistant Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

Abstract

Evaluating the efficacy of Nano CaCO3 particles on amelioration of fatigue and rutting behavior of asphalt binder is the principal aim of this article. To this end, asphalt binder specimens are fabricated by incorporating various amounts of Nano CaCO3 (0.3%, 0.6%, 0.9%, and 1.2%) with asphalt binder 60-70. Fatigue and rutting performance of the asphalt binder specimens are examined by implementing linear amplitude sweep and multiple stress creep recovery experiments. Results indicated that incorporating Nano CaCO3 with the asphalt binder specimens enhanced their resistance to rutting. Asphalt binder samples containing Nano CaCO3 showed higher potential for compensating the induced strains than unmodified samples. Also, by adding Nano CaCO3, the asphalt binder specimens showed improved fatigue behavior. Asphalt binder samples modified with Nano CaCO3 exhibited better behavior when subjected to cyclic loads than unmodified ones. Also in all cases, the asphalt binder specimens containing 0.9% Nano CaCO3 demonstrated the best performance.

Keywords

Main Subjects


[1] E. Batuecas, F. Liendo, T. Tommasi, S. Bensaid, F. Deorsola, D. Fino, Recycling CO2 from flue gas for CaCO3 nanoparticles production as cement filler: A Life Cycle Assessment, Journal of CO2 Utilization 45 (2021) 101446.
[2] L. Poudyal, K. Adhikari, M. Won, Nano Calcium Carbonate (CaCO3) as a Reliable, Durable, and Environment-Friendly Alternative to Diminishing Fly Ash, Materials 14(13) (2021) 3729.
[3] Y. Cheng, H. Han, C. Fang, H. Li, Z. Huang, J. Su, Preparation and properties of nano‐CaCO3/waste polyethylene/styrene‐butadiene‐styrene block polymer‐modified asphalt, Polymer Composites 41(2) (2020) 614-623.
[4] Z. Li, T. Guo, Y. Chen, Q. Liu, Y. Chen, The properties of nano-CaCO3/nano-ZnO/SBR composite-modified asphalt, Nanotechnology Reviews 10(1) (2021) 1253-1265.
[5] S. Lv, S. Wang, T. Guo, C. Xia, J. Li, G. Hou, Laboratory evaluation on performance of compound-modified asphalt for rock asphalt/styrene–butadiene rubber (sbr) and rock asphalt/nano-CaCO3, Applied Sciences 8(6) (2018) 1009.
[6] C. Wu, L. Li, W. Wang, Z. Gu, Experimental characterization of viscoelastic behaviors of nano-tio2/caco3 modified asphalt and asphalt mixture, Nanomaterials 11(1) (2021) 106.
[7] X. Xing, J. Pei, C. Shen, R. Li, J. Zhang, J. Huang, D. Hu, Performance and reinforcement mechanism of modified asphalt binders with nano-particles, whiskers, and fibers, Applied Sciences 9(15) (2019) 2995.
[8] R. Zhai, L. Ge, Y. Li, The effect of nano-CaCO3/styrene–butadiene rubber (SBR) on fundamental characteristic of hot mix asphalt, Road Materials and Pavement Design 21(4) (2020) 1006-1026.
[9] Rezazadeh Eidgahee D, Jahangir H, Solatifar N, Fakharian P, Rezaeemanesh M. (2022). Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Comput Appl 2022. https://doi.org/10.1007/s00521-022-07382-3.
[10]   Mathi KK, Nallasivam K. Dynamic and Fatigue Life Prediction Analysis of Airfield Runway Rigid Pavement Using Finite Element Method. Comput Eng Phys Model 2022;5:1–23. https://doi.org/10.22115/cepm.2022.347999.1215.
[11] A.M. Yarahmadi, G. Shafabakhsh, A. Asakereh, Laboratory investigation of the effect of nano Caco3 on rutting and fatigue of stone mastic asphalt mixtures, Construction and Building Materials 317 (2022) 126127.
[12] A. Al-Sabaeei, M. Napiah, M. Sutanto, N.Z. Habib, N. Bala, I. Kumalasari, A. Ghaleb, Application of nano silica particles to improve high-temperature rheological performance of tyre pyrolysis oil-modified bitumen, Road Materials and Pavement Design  (2021) 1-19.
[13] K. Zhong, Z. Li, J. Fan, G. Xu, X. Huang, Effect of Carbon Black on Rutting and Fatigue Performance of Asphalt, Materials 14(9) (2021) 2383.
[14] J. Huang, G. Shiva Kumar, J. Ren, Y. Sun, Y. Li, C. Wang, Towards the potential usage of eggshell powder as bio-modifier for asphalt binder and mixture: workability and mechanical properties, International Journal of Pavement Engineering  (2021) 1-13.
[15] A.M. Al-Sabaeei, M.B. Napiah, M.H. Sutanto, W.S. Alaloul, N.I.M. Yusoff, F.H. Khairuddin, A.M. Memon, Evaluation of the high-temperature rheological performance of tire pyrolysis oil-modified bio-asphalt, International Journal of Pavement Engineering  (2021) 1-16.
[16] F.S. Bhat, M.S. Mir, Investigating the effects of nano Al2O3 on high and intermediate temperature performance properties of asphalt binder, Road Materials and Pavement Design 22(11) (2021) 2604-2625.
[17] G.A. Shafabakhsh, M. Sadeghnejad, B. Ahoor, E. Taheri, Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen, Construction and Building Materials 237 (2020) 117640.
[18] F. Moghadas Nejad, E. Geraee, A.R. Azarhoosh, The effect of nano calcium carbonate on the dynamic behaviour of asphalt concrete mixture, European Journal of Environmental and Civil Engineering 24(8) (2020) 1219-1228.
[19] M. Motamedi, G. Shafabakhsh, M. Azadi, Evaluating fatigue-damage of asphalt binder and mastic modified with nano-silica and synthesized polyurethane using VECD method, Journal of Materials in Civil Engineering 32(8) (2020) 04020218.
[20] G. Shafabakhsh, M. Aliakbari Bidokhti, H. Divandari, Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature, Road Materials and Pavement Design  (2020) 1-15.
[21] S.A. Ghanoon, J. Tanzadeh, Laboratory evaluation of nano-silica modification on rutting resistance of asphalt Binder, Construction and Building Materials 223 (2019) 1074-1082.
[22] J. Li, S. Yang, Y. Liu, Y. Muhammad, Z. Su, J. Yang, Studies on the properties of modified heavy calcium carbonate and SBS composite modified asphalt, Construction and Building Materials 218 (2019) 413-423.
[23] A. Akbari, A. Modarres, Evaluating the effect of nano-clay and nano-alumina on the fatigue response of bitumen using strain and time sweep tests, International Journal of Fatigue 114 (2018) 311-322.
[24] A.K. Arshad, M.S. Samsudin, K.A. Masri, M.R. Karim, A.A. Halim, Multiple stress creep and recovery of nanosilica modified asphalt binder, MATEC Web of Conferences, EDP Sciences, 2017, p. 09005.
[25] Y.-F. López-Contreras, A. Chaves-Guerrero, M. Akbulut, Z. Cheng, L.-J. Hoyos-Marín, Adhesion forces in asphalt mixtures at nanoscale, CT&F-Ciencia, Tecnología y Futuro 7(1) (2017) 59-72.
[26] W. Huang, N. Tang, Characterizing SBS modified asphalt with sulfur using multiple stress creep recovery test, Construction and Building Materials 93 (2015) 514-521.
[27] G. Vasilievici, D. Bombos, M. Bombos, R. Gabor, C. Nicolae, Asphalt nanocomposite based on calcium carbonate, Materiale Plastice 50(3) (2013) 220-224.
[28] R.B.M.a.T. El-Korchi, Pavement Engineering Principles and Practice, 3rd edition ed., CRC Press2017.
[29] P.D. Y. Richard Kim, P.E., Modelling of Asphalt Concrete, 1st Edition ed., McGraw-Hill Education; 1st edition2008.
[30] A. Ghadami Jadval Ghadam, M. Idrees, Characterization of CaCO3 nanoparticles synthesized by reverse microemulsion technique in different concentrations of surfactants, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 32(3) (2013) 27-35.
[31] M. Sadeghnejad, G. Shafabakhsh, Use of Nano SiO2 and Nano TiO2 to improve the mechanical behaviour of stone mastic asphalt mixtures, Construction and Building Materials 157 (2017) 965-974.
[32] S.A. Ghanoon, J. Tanzadeh, M. Mirsepahi, Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder, Construction and Building Materials 238 (2020) 117592.
[33] I.G.d.N. Camargo, B. Hofko, J. Mirwald, H. Grothe, Effect of Thermal and Oxidative Aging on Asphalt Binders Rheology and Chemical Composition, Materials 13(19) (2020) 4438.
[34] AASHTO, T240, Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test), American Association of State and Highway Transportation Officials  (2021).
[35] AASHTO, R28, Standard Method of Test for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV) American Association of State and Highway Transportation Officials  (2021).
[36] AASHTO, T350-14, Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), American Association of State and Highway Transportation Officials  (2014).
[37] AASHTO, TP 101-12, Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep, American Association of State and Highway Transportation Officials  (2018).