[1] Karuppanasamy J, Pillai RG. Statistical Distributions for the Corrosion Rates of Conventional and Prestressing Steel Reinforcement Embedded in Chloride Contaminated Mortar. CORROSION 2017;73:1119–31. https://doi.org/10.5006/2330.
[2] Ramezanianpou AA, Jahangiri E, Moodi F, Ahmadi B. Assessment of the Service Life Design Model Proposed by fib for the Persian Gulf Region. J Oceanogr 2014;5:101–12.
[3] Chou JS, Ngo NT, Chong WK. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Eng Appl Artif Intell 2017;65:471–83. https://doi.org/10.1016/j.engappai.2016.09.008.
[4] Sadowski L. Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks. Arch Civ Mech Eng 2013;13:104–11. https://doi.org/10.1016/j.acme.2012.10.007.
[5] Jahangir H, Nikkhah Z, Rezazadeh Eidgahee D, Esfahani MR. Performance Based Review and Fine-Tuning of TRM-Concrete Bond Strength Existing Models. J Soft Comput Civ Eng 2023;7:43–55. https://doi.org/10.22115/scce.2022.349483.1476.
[6] Jiménez-Come MJ, Muñoz E, García R, Matres V, Martín ML, Trujillo F, et al. Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques. J Appl Log 2012;10:291–7. https://doi.org/10.1016/j.jal.2012.07.005.
[7] Papadimitropoulos VC, Tsikas PK, Chassiakos AP. Modeling the Influence of Environmental Factors on Concrete Evaporation Rate. J Soft Comput Civ Eng 2020;4:79–97. https://doi.org/10.22115/scce.2020.246071.1254.
[8] Mousavifard SM, Attar MM, Ghanbari A, Dadgar M. Application of artificial neural network and adaptive neuro-fuzzy inference system to investigate corrosion rate of zirconium-based nano-ceramic layer on galvanized steel in 3.5% NaCl solution. J Alloys Compd 2015;639:315–24. https://doi.org/10.1016/j.jallcom.2015.03.052.
[9] Chen B, Zang C. Artificial immune pattern recognition for structure damage classification. Comput Struct 2009;87:1394–407. https://doi.org/10.1016/j.compstruc.2009.08.012.
[10] Taffese WZ, Sistonen E. Significance of chloride penetration controlling parameters in concrete: Ensemble methods. Constr Build Mater 2017;139:9–23. https://doi.org/10.1016/j.conbuildmat.2017.02.014.
[11] Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 2023;47:1790–802. https://doi.org/10.1016/j.istruc.2022.12.007.
[12] Kontoni D-PN, Onyelowe KC, Ebid AM, Jahangir H, Rezazadeh Eidgahee D, Soleymani A, et al. Gene Expression Programming (GEP) Modelling of Sustainable Building Materials including Mineral Admixtures for Novel Solutions. Mining 2022;2:629–53. https://doi.org/10.3390/mining2040034.
[13] Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp Geotech 2023;38:100906. https://doi.org/10.1016/j.trgeo.2022.100906.
[14] Khademi A, Behfarnia K, Kalman Šipoš T, Miličević I. The Use of Machine Learning Models in Estimating the Compressive Strength of Recycled Brick Aggregate Concrete. Comput Eng Phys Model 2021;4:1–25. https://doi.org/10.22115/cepm.2021.297016.1181.
[15] Rezazadeh Eidgahee D, Haddad A, Naderpour H. Evaluation of shear strength parameters of granulated waste rubber using artificial neural networks and group method of data handling. Sci Iran 2019;26:3233–44. https://doi.org/10.24200/sci.2018.5663.1408.
[16] Naderpour H, Haji M, Mirrashid M. Shear capacity estimation of FRP-reinforced concrete beams using computational intelligence. Structures 2020;28:321–8. https://doi.org/10.1016/j.istruc.2020.08.076.
[17] Naderpour H, Mirrashid M. Proposed soft computing models for moment capacity prediction of reinforced concrete columns. Soft Comput 2020;24:11715–29. https://doi.org/10.1007/s00500-019-04634-8.
[18] Naderpour H, Mirrashid M. Moment capacity estimation of spirally reinforced concrete columns using ANFIS. Complex Intell Syst 2020;6:97–107. https://doi.org/10.1007/s40747-019-00118-2.
[19] Atha DJ, Jahanshahi MR. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct Heal Monit 2018;17:1110–28. https://doi.org/10.1177/1475921717737051.
[20] Naderpour H, Sharei M, Fakharian P, Heravi MA. Shear Strength Prediction of Reinforced Concrete Shear Wall Using ANN, GMDH-NN and GEP. J Soft Comput Civ Eng 2022;6:66–87. https://doi.org/10.22115/SCCE.2022.283486.1308.
[21] Rezazadeh Eidgahee D, Jahangir H, Solatifar N, Fakharian P, Rezaeemanesh M. Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Comput Appl 2022;34:17289–314. https://doi.org/10.1007/s00521-022-07382-3.
[22] Onyelowe KC, Rezazadeh Eidgahee D, Jahangir H, Aneke FI, Nwobia LI. Forecasting Shear Parameters, and Sensitivity and Error Analyses of Treated Subgrade Soil. Transp Infrastruct Geotechnol 2022. https://doi.org/10.1007/s40515-022-00225-7.
[23] Salahudeen AB, Jalili M, Eidgahee DR, Onyelowe KC, Kabiri MK. Prediction of Durability, Resilient Modulus and Resistance Value of Cement Kiln Dust-Stabilized Expansive Clay for Flexible Pavement Application Using Artificial Neural Networks. vol. 164. Cham: Springer International Publishing; 2022. https://doi.org/10.1007/978-3-030-77230-7.
[24] Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari SM. A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Eng Sci Technol an Int J 2020;23:382–91. https://doi.org/10.1016/j.jestch.2019.05.013.
[25] Naderpour H, Noormohammadi E, Fakharian P. Prediction of Punching Shear Capacity of RC Slabs using Support Vector Machine. Concr Res 2017;10:95–107. https://doi.org/10.22124/jcr.2017.2417.
[26] Angst UM. Predicting the time to corrosion initiation in reinforced concrete structures exposed to chlorides. Cem Concr Res 2019;115:559–67. https://doi.org/10.1016/j.cemconres.2018.08.007.
[27] Khan MU, Ahmad S, Al-Gahtani HJ. Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. Int J Corros 2017;2017:1–9. https://doi.org/10.1155/2017/5819202.
[28] Femenias Y, Angst U, Moro F, Elsener B. Development of a Novel Methodology to Assess the Corrosion Threshold in Concrete Based on Simultaneous Monitoring of pH and Free Chloride Concentration. Sensors 2018;18:3101. https://doi.org/10.3390/s18093101.
[29] Ghanooni Bagha M, Asgarani S. Influence of effective chloride corrosion parameters variations on corrosion initiation. Modares Civ Eng J 2017;17.
[30] Nogueira CG, Leonel ED. Probabilistic models applied to safety assessment of reinforced concrete structures subjected to chloride ingress. Eng Fail Anal 2013;31:76–89. https://doi.org/10.1016/j.engfailanal.2013.01.023.