[1] M. Sadeghnejad and G. Shafabakhsh, “Estimation the Fatigue Number of Stone Mastic Asphalt Mixtures Modified with Nano SiO2 and Nano TiO2,” J. Rehabil. Civ. Eng., vol. 5, no. 1, pp. 17–32, 2017, doi: 10.22075/jrce.2017.1835.1158.
[2] A. Das, Analysis of Pavement Structures. Boca Raton: CRC Press, 2023. doi: 10.1201/9781003190769.
[3] G. H. Shafabakhsh and O. J. Ani, “Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates,” Constr. Build. Mater., vol. 98, pp. 692–702, Nov. 2015, doi: 10.1016/j.conbuildmat.2015.08.083.
[4] S. J. Peters, T. S. Rushing, E. N. Landis, and T. K. Cummins, “Nanocellulose and Microcellulose Fibers for Concrete,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2142, no. 1, pp. 25–28, Jan. 2010, doi: 10.3141/2142-04.
[5] S. H. Firoozifar, S. Foroutan, and S. Foroutan, “The effect of asphaltene on thermal properties of bitumen,” Chem. Eng. Res. Des., vol. 89, no. 10, pp. 2044–2048, Oct. 2011, doi: 10.1016/j.cherd.2011.01.025.
[6] G. Valdés-Vidal, A. Calabi-Floody, R. Miró-Recasens, and J. Norambuena-Contreras, “Mechanical behavior of asphalt mixtures with different aggregate type,” Constr. Build. Mater., vol. 101, pp. 474–481, Dec. 2015, doi: 10.1016/j.conbuildmat.2015.10.050.
[7] M. Ghasemi, S. M. Marandi, M. Tahmooresi, J. Kamali, and R. Taherzade, “Modification of stone matrix asphalt with nano-SiO2,” J. Basic Appl. Sci. Res., vol. 2, no. 2, pp. 1338–1344, 2012.
[8] Z. Feng, J. Yu, and S. Wu, “Rheological evaluation of bitumen containing different ultraviolet absorbers,” Constr. Build. Mater., vol. 29, pp. 591–596, Apr. 2012, doi: 10.1016/j.conbuildmat.2011.11.007.
[9] Walters, “ENHANCING ASPHALT RHEOLOGICAL BEHAVIOR AND AGING SUSCEPTIBILITY USING BIO-CHAR AND NANO-CLAY,” Am. J. Eng. Appl. Sci., vol. 7, no. 1, pp. 66–76, Jan. 2014, doi: 10.3844/ajeassp.2014.66.76.
[10] X. Hu, K. Dai, and P. Pan, “Investigation of engineering properties and filtration characteristics of porous asphalt concrete containing activated carbon,” J. Clean. Prod., vol. 209, pp. 1484–1493, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.115.
[11] E. Şeyma Seyrek, E. Yalçin, M. Yilmaz, B. Vural Kök, and H. Arslanoğlu, “Effect of activated carbon obtained from vinasse and marc on the rheological and mechanical characteristics of the bitumen binders and hot mix asphalts,” Constr. Build. Mater., vol. 240, p. 117921, Apr. 2020, doi: 10.1016/j.conbuildmat.2019.117921.
[12] G. Shafabakhsh, S. M. Mirabdolazimi, and M. Sadeghnejad, “Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures,” Constr. Build. Mater., vol. 54, pp. 566–571, Mar. 2014, doi: 10.1016/j.conbuildmat.2013.12.064.
[13] S. H. Carpenter, K. A. Ghuzlan, and S. Shen, “Fatigue Endurance Limit for Highway and Airport Pavements,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1832, no. 1, pp. 131–138, Jan. 2003, doi: 10.3141/1832-16.
[14] M. M. Karimi, H. Jahanbakhsh, B. Jahangiri, and F. Moghadas Nejad, “Induced heating-healing characterization of activated carbon modified asphalt concrete under microwave radiation,” Constr. Build. Mater., vol. 178, pp. 254–271, Jul. 2018, doi: 10.1016/j.conbuildmat.2018.05.012.
[15] J. Tang, Q. Liu, S. Wu, Q. Ye, Y. Sun, and E. Schlangen, “Investigation of the optimal self-healing temperatures and healing time of asphalt binders,” Constr. Build. Mater., vol. 113, pp. 1029–1033, Jun. 2016, doi: 10.1016/j.conbuildmat.2016.03.145.
[16] R. Karlsson and U. Isacsson, “Investigations on bitumen rejuvenator diffusion and structural stability (with discussion),” J. Assoc. Asph. Paving Technol., vol. 72, 2003.
Ph.D. Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran