[1] Porter ML, Ekberg Jr CE. Investigation of cold-formed steel-deck-reinforced concrete floor slabs 1971.
[2] Daniels BJ, Crisinel M. Composite slab behavior and strength analysis. Part II: Comparisons with test results and parametric analysis. J Struct Eng 1993;119:36–49.
[3] Johnson RP, Shepherd AJ. Resistance to longitudinal shear of composite slabs with longitudinal reinforcement. J Constr Steel Res 2013;82:190–4. https://doi.org/10.1016/j.jcsr.2012.12.005.
[4] Marimuthu V, Seetharaman S, Arul Jayachandran S, Chellappan A, Bandyopadhyay TK, Dutta D. Experimental studies on composite deck slabs to determine the shear-bond characteristic values of the embossed profiled sheet. J Constr Steel Res 2007;63:791–803. https://doi.org/10.1016/j.jcsr.2006.07.009.
[5] Hedaoo N, Gupta L, Ronghe G. Design of composite slabs with profiled steel decking: a comparison between experimental and analytical studies. Int J Adv Struct Eng 2012;4:1. https://doi.org/10.1186/2008-6695-3-1.
[6] Gholamhoseini A, Gilbert RI, Bradford MA, Chang ZT. Longitudinal shear stress and bond–slip relationships in composite concrete slabs. Eng Struct 2014;69:37–48. https://doi.org/10.1016/j.engstruct.2014.03.008.
[7] Calixto J, Lavall AC, Melo CB, Pimenta RJ, Monteiro RC. Behaviour and strength of composite slabs with ribbed decking. J Constr Steel Res 1998;46:211–2. https://doi.org/10.1016/S0143-974X(98)00127-8.
[8] Ollgaard JG, Slutter RG, Fisher JW. Shear strength of stud connectors in lightweight and normal-weight concrete. Eng J 1971;8:55–64.
[9] Porter ML, Greimann LF. Shear-bond strength of studded steel deck slabs 1984.
[10] Mäkeläinen P, Sun Y. The longitudinal shear behaviour of a new steel sheeting profile for composite floor slabs. J Constr Steel Res 1999;49:117–28. https://doi.org/10.1016/S0143-974X(98)00211-9.
[11] Chen S. Load carrying capacity of composite slabs with various end constraints. J Constr Steel Res 2003;59:385–403. https://doi.org/10.1016/S0143-974X(02)00034-2.
[12] Johnson RP. Composite Structures of Steel and Concrete. Wiley; 2004. https://doi.org/10.1002/9780470774625.
[13] Lauwens K, Douchy J, Fortan M, Arrayago I, Mirambell E, Van Gysel A, et al. 08.10: Experimental study of ferritic stainless steel composite slabs. Ce/Papers 2017;1:1909–18. https://doi.org/10.1002/cepa.235.
[14] Abdullah R, Samuel Easterling W. New evaluation and modeling procedure for horizontal shear bond in composite slabs. J Constr Steel Res 2009;65:891–9. https://doi.org/10.1016/j.jcsr.2008.10.009.
[15] Siddh SP, Patil YD, Patil HS. Experimental studies on behaviour of composite slab with profiled steel sheeting. Mater Today Proc 2017;4:9792–6. https://doi.org/10.1016/j.matpr.2017.06.268.
[16] Daniels BJ, O’Leary D, Crisinel M. The analysis of composite slabs with profiled sheeting using a computer based semi-empirical partial interaction approach 1990.
[17] Fallah MM, Sharbatdar M, Kheyroddin A. Experimental strengthening of the two-way reinforced concrete slabs with high performance fiber reinforced cement composites (HPFRCC) prefabricated sheets. J Rehabil Civ Eng 2019;7:1–17.
[18] Lakshmikandhan KN, Sivakumar P, Ravichandran R, Jayachandran SA. Investigations on Efficiently Interfaced Steel Concrete Composite Deck Slabs. J Struct 2013;2013:1–10. https://doi.org/10.1155/2013/628759.
[19] Mäkeläinen P, Sun Y. Development of a new profiled steel sheeting for composite slabs. J Constr Steel Res 1998;46:220. https://doi.org/10.1016/S0143-974X(98)80021-7.
[20] Lopes E, Simoes R. Experimental and analytical behaviour of composite slabs. Steel Compos Struct An Int J 2008;8:361–88.
[21] Brückner A, Ortlepp R, Curbach M. Textile reinforced concrete for strengthening in bending and shear. Mater Struct 2006;39:741–8. https://doi.org/10.1617/s11527-005-9027-2.
[22] Hegger J, Voss S. Investigations on the bearing behaviour and application potential of textile reinforced concrete. Eng Struct 2008;30:2050–6. https://doi.org/10.1016/j.engstruct.2008.01.006.
[23] Donnini J, Corinaldesi V, Nanni A. Mechanical properties of FRCM using carbon fabrics with different coating treatments. Compos Part B Eng 2016;88:220–8. https://doi.org/10.1016/j.compositesb.2015.11.012.
[24] Xu S, Krüger M, Reinhardt H-W, Ožbolt J. Bond Characteristics of Carbon, Alkali Resistant Glass, and Aramid Textiles in Mortar. J Mater Civ Eng 2004;16:356–64. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:4(356).
[25] Rathod N, Gonbare M, Pujari M. Basalt Fiber Reinforced Concrete. Int J Sci Res 2013:359–61.
[26] Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos Part B Eng 2005;36:504–12. https://doi.org/10.1016/j.compositesb.2005.02.002.
[27] High C, Seliem HM, El-Safty A, Rizkalla SH. Use of basalt fibers for concrete structures. Constr Build Mater 2015;96:37–46. https://doi.org/10.1016/j.conbuildmat.2015.07.138.
[28] Jiang CH, McCarthy TJ, Chen D, Dong QQ. Influence of Basalt Fiber on Performance of Cement Mortar. Key Eng Mater 2010;426–427:93–6. https://doi.org/10.4028/www.scientific.net/KEM.426-427.93.
[29] Alnahhal W, Aljidda O. Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates. Constr Build Mater 2018;169:165–78. https://doi.org/10.1016/j.conbuildmat.2018.02.135.
[30] Larrinaga P, Chastre C, Biscaia HC, San-José JT. Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress. Mater Des 2014;55:66–74. https://doi.org/10.1016/j.matdes.2013.09.050.
[31] Liu S, Wang X, Rawat P, Chen Z, Shi C, Zhu D. Experimental study and analytical modeling on tensile performance of basalt textile reinforced concrete. Constr Build Mater 2021;267:120972. https://doi.org/10.1016/j.conbuildmat.2020.120972.
[32] Du Y, Zhang M, Zhou F, Zhu D. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading. Constr Build Mater 2017;138:88–100. https://doi.org/10.1016/j.conbuildmat.2017.01.083.
[33] Waldmann D, May A, Thapa VB. Influence of the sheet profile design on the composite action of slabs made of lightweight woodchip concrete. Constr Build Mater 2017;148:887–99. https://doi.org/10.1016/j.conbuildmat.2017.04.193.
[34] Hossain KMA, Alam S, Anwar MS, Julkarnine KMY. High performance composite slabs with profiled steel deck and Engineered Cementitious Composite – Strength and shear bond characteristics. Constr Build Mater 2016;125:227–40. https://doi.org/10.1016/j.conbuildmat.2016.08.021.
[35] Luttrell LD, Davison JH. Composite slabs with steel deck panels 1973.
[36] IS 8112: Specification for 43 grade ordinary Portland cement 2013.
[37] IS 10262 : Concrete Mix Proportioning — Guidelines 2009.
[38] IS 516: Method of Tests for Strength of Concrete 2014.
[39] IS 456: Plain and Reinforced Concrete - Code of Practice 2000.
[40] Test methods for tensile properties of carbon fiber multifilament 2005.
[41] Johnson RP, Anderson D. EN1994 Eurocode 4: Design of composite steel and concrete structures. Civ Eng 2001;144:33–8. https://doi.org/10.1680/cien.144.6.33.40615.
[42] Standard B. 5950" Structural use of steelwork in building" Part 1. Br Stand Inst 1985.
[43] de Andrade SAL, Vellasco PCG d. S, da Silva JGS, Takey TH. Standardized composite slab systems for building constructions. J Constr Steel Res 2004;60:493–524. https://doi.org/10.1016/S0143-974X(03)00126-3.
[44] Engineers ASC. Standard for the Structural Design of Composite Slabs and Standard Practice for Construction and Inspection of Composite Slabs: ANSI/ASCE 3-91, ANSI Approved December 11, 1992 ; Standard Practice for Construction and Inspection of Composite Slabs : ANSI/ASCE 9-91, ANSI Approved December 11, 1992. American Society of Civil Engineers; 1994.