[1] Ghasemzadeh H, Mehrpajouh A, Pishvaei M. Laboratory analyses of Kaolinite stabilized by vinyl polymers with different monomer types. Eng Geol 2021;280. https://doi.org/10.1016/j.enggeo.2020.105938.
[2] Ghasemzadeh H, Modiri F. Application of novel Persian gum hydrocolloid in soil stabilization. Carbohydr Polym 2020;246. https://doi.org/10.1016/j.carbpol.2020.116639.
[3] Changizi F, Haddad A. Stabilization of Subgrade Soil for Highway by Recycled Polyester Fiber. J Rehabil Civ Eng 2014;2.
[4] Liu J, Bu F, Bai Y, Chen Z, Kanungo DP, Song Z, et al. Study on engineering properties of sand strengthened by mixed fibers and polyurethane organic polymer. Bull Eng Geol Environ 2020;79. https://doi.org/10.1007/s10064-020-01751-9.
[5] Al Hattamleh O, Rababah S, Alawneh A, Alqawab’ah A. Verification of unified effective stress theory based on the effect of moisture on mechanical properties of fiber reinforced unsaturated soil. Geotext Geomembranes 2021;49. https://doi.org/10.1016/j.geotexmem.2021.01.007.
[6] AlShuhail K, Aldawoud A, Syarif J, Abdoun IA. Enhancing the performance of compressed soil bricks with natural additives: Wood chips and date palm fibers. Constr Build Mater 2021;295. https://doi.org/10.1016/j.conbuildmat.2021.123611.
[7] Faisal Noaman M, Khan MA, Ali K. Effect of artificial and natural fibers on behavior of soil. Mater. Today Proc., vol. 64, 2022. https://doi.org/10.1016/j.matpr.2022.04.954.
[8] Huang Z, Sun HY, Dai YM, Hou PB, Zhou WZ, Bian LL. A study on the shear strength and dry-wet cracking behaviour of waste fibre-reinforced expansive soil. Case Stud Constr Mater 2022;16. https://doi.org/10.1016/j.cscm.2022.e01142.
[9] Basha EA, Hashim R, Mahmud HB, Muntohar AS. Stabilization of residual soil with rice husk ash and cement. Constr Build Mater 2005;19. https://doi.org/10.1016/j.conbuildmat.2004.08.001.
[10] Siswosoebrotho BI, Hossain M, Alias A, Huat BBK. Stabilization of tropical residual soils. Trop. Residual Soils Eng., 2007. https://doi.org/10.1201/9780203024621-14.
[11] Chew SH, Kamruzzaman AHM, Lee FH. Physicochemical and Engineering Behavior of Cement Treated Clays. J Geotech Geoenvironmental Eng 2004;130. https://doi.org/10.1061/(asce)1090-0241(2004)130:7(696).
[12] Estabragh AR, Bordbar AT, Javadi AA. A Study on the Mechanical Behavior of a Fiber-Clay Composite with Natural Fiber. Geotech Geol Eng 2013;31. https://doi.org/10.1007/s10706-012-9602-6.
[13] Sariosseiri F, Razavi M, Carlson K, Ghazvinian B. Stabilization of Soils with Portland Cement and CKD and Application of CKD on Slope Erosion Control, 2011. https://doi.org/10.1061/41165(397)80.
[14] Farzadnia N, Abdullah a a A, Demirboga R. Incorporation of Mineral Admixtures in Sustainable High Performance Concrete. Int J Sustain Constr Eng Technol 2011;2.
[15] Tran KQ, Satomi T, Takahashi H. Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Constr Build Mater 2018;178. https://doi.org/10.1016/j.conbuildmat.2018.05.104.
[16] Praveen G V., Kurre P, Chandrabai T. Improvement of California Bearing Ratio (CBR) value of Steel Fiber reinforced Cement modified Marginal Soil for pavement subgrade admixed with Fly Ash. Mater. Today Proc., vol. 39, 2020. https://doi.org/10.1016/j.matpr.2020.08.814.
[17] Rajasekaran G, Rao SN. Strength characteristics of lime-treated marine clay. Gr Improv 2000;4. https://doi.org/10.1680/grim.2000.4.3.127.
[18] Consoli NC, Lopes L da S, Prietto PDM, Festugato L, Cruz RC. Variables Controlling Stiffness and Strength of Lime-Stabilized Soils. J Geotech Geoenvironmental Eng 2011;137. https://doi.org/10.1061/(asce)gt.1943-5606.0000470.
[19] Baldovino JA, Moreira EB, Teixeira W, Izzo RLS, Rose JL. Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. J Rock Mech Geotech Eng 2018;10. https://doi.org/10.1016/j.jrmge.2017.10.001.
[20] Zhang J, Deng A, Jaksa M. Enhancing mechanical behavior of micaceous soil with jute fibers and lime additives. J Rock Mech Geotech Eng 2021;13. https://doi.org/10.1016/j.jrmge.2021.04.008.
[21] Dehestani H, Haddad A, Karimi-Maleh H. Introducing Nanoclay and Silica-based Composites as a New Approach for Improving Chemical and Mechanical Properties of Soil: A Review. Nanosci Nanotechnology-Asia 2021;12. https://doi.org/10.2174/2210681211666211004104152.
[22] Bakhshi H, Ahmadi R. Influence of Nano-Silica and Silica Fume in the Steel Corrosion Embedded in Concrete. J Rehabil Civ Eng 2018;6.
[23] Hanus MJ, Harris AT. Nanotechnology innovations for the construction industry. Prog Mater Sci 2013;58. https://doi.org/10.1016/j.pmatsci.2013.04.001.
[24] Zhang G. Soil Nanoparticles and their Influence on Engineering Properties of Soils, 2007. https://doi.org/10.1061/40917(236)37.
[25] Ghasabkolaei N, Janalizadeh Choobbasti A, Roshan N, Ghasemi SE. Geotechnical properties of the soils modified with nanomaterials: A comprehensive review. Arch Civ Mech Eng 2017;17. https://doi.org/10.1016/j.acme.2017.01.010.
[26] Siddique R. Utilization of silica fume in concrete: Review of hardened properties. Resour Conserv Recycl 2011;55. https://doi.org/10.1016/j.resconrec.2011.06.012.
[27] Siddique R, Chahal N. Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar. Resour Conserv Recycl 2011;55. https://doi.org/10.1016/j.resconrec.2011.03.004.
[28] Taha MR, Taha OME. Influence of nano-material on the expansive and shrinkage soil behavior. J Nanoparticle Res 2012;14. https://doi.org/10.1007/s11051-012-1190-0.
[29] Pusadkar DS, Bakhade S, Dhatrak DAI. Effect of Nano-Copper on Performance of Black Cotton Soil. Int J Eng Res Appl 2017;07. https://doi.org/10.9790/9622-0706073439.
[30] Luo HL, Hsiao DH, Lin DF, Lin CK. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide. Int J Transp Sci Technol 2012;1. https://doi.org/10.1260/2046-0430.1.1.83.
[31] Majeed ZH, Taha MR, Jawad IT. Stabilization of soft soil using nanomaterials. Res J Appl Sci Eng Technol 2014;8. https://doi.org/10.19026/rjaset.8.999.
[32] Naval Sanjeev, Chandan Kanav, Sharma Diksha. Stabilization of Expansive soils using Nanomaterials. Int. Interdiscip. Conf. Sci. Technol. Eng. Manag. Pharm. Humanit., 2017.
[33] Mohammadi M, Niazian M. Investigation of Nano-clay effect on geotechnical properties of rasht clay. Int J Adv Sci Tech Res 2013;3.
[34] Pham H, Nguyen QP. Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J Nanoparticle Res 2014;16. https://doi.org/10.1007/s11051-013-2137-9.
[35] Changizi F, Haddad A. Effect of Nano-SiO2 on the Geotechnical Properties of Cohesive Soil. Geotech Geol Eng 2016;34. https://doi.org/10.1007/s10706-015-9962-9.
[36] Rajabi AM, Ardakani SB, Abdollahi AH. The Effect of Nano-Iron Oxide on the Strength and Consolidation Parameters of a Clay Soil: An Experimental Study. Iran J Sci Technol - Trans Civ Eng 2021;45. https://doi.org/10.1007/s40996-021-00640-9.
[37] Khodaparast M, Rajabi AM, Mohammadi M. Mechanical properties of silty clay soil treated with a mixture of lime and zinc oxide nanoparticles. Constr Build Mater 2021;281. https://doi.org/10.1016/j.conbuildmat.2021.122548.
[38] Alsharef JMA, Taha MR, Govindasamy P, Firoozi AA, Al-Mansob RA. Effect of nanocarbons on physical and mechanical properties of soils. Carbon Nanomater. Agri-food Environ. Appl., 2019. https://doi.org/10.1016/B978-0-12-819786-8.00020-7.
[39] Kannan G, O’Kelly BC, Sujatha ER. Geotechnical investigation of low-plasticity organic soil treated with nano-calcium carbonate. J Rock Mech Geotech Eng 2023;15. https://doi.org/10.1016/j.jrmge.2022.05.004.
[40] Ghasabkolaei N, Janalizadeh A, Jahanshahi M, Roshan N, Ghasemi SE. Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: An experimental study. Eur Phys J Plus 2016;131. https://doi.org/10.1140/epjp/i2016-16134-3.
[41] Ghavami S, Naseri H, Jahanbakhsh H, Moghadas Nejad F. The impacts of nano-SiO2 and silica fume on cement kiln dust treated soil as a sustainable cement-free stabilizer. Constr Build Mater 2021;285. https://doi.org/10.1016/j.conbuildmat.2021.122918.
[42] Chen Q, Yan G, Zhuang X, Pain A. Dynamic characteristics and microstructural study of nano calcium carbonate modified cemented soil under different salt water solutions. Transp Geotech 2022;32. https://doi.org/10.1016/j.trgeo.2021.100700.
[43] Kulanthaivel P, Soundara B, Velmurugan S, Naveenraj V. Experimental investigation on stabilization of clay soil using nano-materials and white cement. Mater. Today Proc., vol. 45, 2021. https://doi.org/10.1016/j.matpr.2020.02.107.
[44] Changizi F, Haddad A. Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber. J Rock Mech Geotech Eng 2015;7. https://doi.org/10.1016/j.jrmge.2015.03.013.
[45] Tomar A, Sharma T, Singh S. Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Mater. Today Proc., vol. 26, 2019. https://doi.org/10.1016/j.matpr.2019.12.239.
[46] Changizi F, Haddad A. Improving the geotechnical properties of soft clay with nano-silica particles. Proc Inst Civ Eng Gr Improv 2017;170. https://doi.org/10.1680/jgrim.15.00026.
[47] Choobbasti AJ, Samakoosh MA, Kutanaei SS. Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr Build Mater 2019;211. https://doi.org/10.1016/j.conbuildmat.2019.03.306.
[48] Mohammadi M, Rajabi AM, Khodaparast M. Experimental and Numerical Evaluation of the Effect of Nano Calcium Carbonate on Geotechnical Properties of Clayey Sand Soil. KSCE J Civ Eng 2022;26. https://doi.org/10.1007/s12205-021-1914-8.
[49] Kholghifard M, Amini Behbahani B. Shear strength of clayey sand treated by nanoclay mixed with recycled polyester fiber. J Cent South Univ 2022;29. https://doi.org/10.1007/s11771-022-4895-y.
[50] Zhao LC, Xu L. Experimental investigation on mechanical response of soil reinforced by carbon nanotubes and silica dioxide nanoparticles. Constr Build Mater 2024;415. https://doi.org/10.1016/j.conbuildmat.2023.134203.
[51] Valizadeh M, Janalizadeh Choobbasti A. Evaluation of nano-graphene effect on mechanical behavior of clayey sand with microstructural and self-healing approach. J Adhes Sci Technol 2020;34. https://doi.org/10.1080/01694243.2019.1676598.
[52] Ahmadi H. Experimental study of the effect of nano-additives on the stiffness of cemented fine sand. Int J Geotech Eng 2021;15. https://doi.org/10.1080/19386362.2019.1663067.
[53] Babaei A, Ghazavi M, Ganjian N. Shear Strength Parameters of Clayey Sand Treated with Cement and Nano Titanium Dioxide. Geotech Geol Eng 2022;40. https://doi.org/10.1007/s10706-021-01881-1.
[54] Babaei A, Ghazavi M, Ganjian N. Experimental investigation of nano-ZnO effect on mechanical properties of cemented clayey sand. Bull Eng Geol Environ 2022;81. https://doi.org/10.1007/s10064-022-02568-4.
[55] Kulkarni PP, Mandal JN. Evaluation of Strength Characteristics of Soil Stabilized with Nano Zinc Oxide—Cement Mixes for Low Volume Road Applications. Int J Geosynth Gr Eng 2022;8. https://doi.org/10.1007/s40891-021-00346-y.
[56] Kamgar R, Salimi Naghani M, Heidarzadeh H, Nasiri Ardali F. Modeling nanoclay effects on different parameters of a clayey sand. Model Earth Syst Environ 2021;7. https://doi.org/10.1007/s40808-020-00987-4.
[57] Iranpour B, haddad A. The influence of nanomaterials on collapsible soil treatment. Eng Geol 2016;205. https://doi.org/10.1016/j.enggeo.2016.02.015.
[58] Haeri SM, Valishzadeh A. Evaluation of Using Different Nanomaterials to Stabilize the Collapsible Loessial Soil. Int J Civ Eng 2021;19. https://doi.org/10.1007/s40999-020-00583-8.
[59] Almurshedi AD, Thijeel JK, Al-Awad K. Mitigation of collapse of marshes soil by nano silica fume. IOP Conf. Ser. Mater. Sci. Eng., vol. 737, 2020. https://doi.org/10.1088/1757-899X/737/1/012110.
[60] Hosseini A, Haeri SM, Mahvelati S, Fathi A. Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils. J Rock Mech Geotech Eng 2019;11. https://doi.org/10.1016/j.jrmge.2019.06.004.
[61] Kargar P, Osouli A, Vaughn B, Hosseini A, Rostami H. Feasibility Study of Collapse Remediation of Illinois Loess Using Electrokinetics Technique by Nanosilica and Salt, 2020. https://doi.org/10.1061/9780784482780.066.
[62] Zimbardo M, Ercoli L, Mistretta MC, Scaffaro R, Megna B. Collapsible intact soil stabilisation using non-aqueous polymeric vehicle. Eng Geol 2020;264. https://doi.org/10.1016/j.enggeo.2019.105334.
[63] Johari A, Golkarfard H, Davoudi F, Fazeli A. A predictive model based on the experimental investigation of collapsible soil treatment using nano-clay in the Sivand Dam region, Iran. Bull Eng Geol Environ 2021;80. https://doi.org/10.1007/s10064-021-02360-w.
[64] Johari A, Golkarfard H, Davoudi F, Fazeli A. Experimental Investigation of Collapsible Soils Treatment Using Nano-silica in the Sivand Dam Region, Iran. Iran J Sci Technol - Trans Civ Eng 2022;46. https://doi.org/10.1007/s40996-021-00675-y.
[65] Yazarloo R, Khamehchiyan M, Nikudel MR. The Effect of Nano-Kaolinite on Liquefaction Resistance of Liquefiable Sand. Geopersia 2020;10. https://doi.org/10.22059/geope.2019.259459.648392.
[66] Sandiani M, Tanzadeh J. Laboratory assessing of the liquefaction potential and strength properties of Sand soil treated with mixture of nanoclay and glass fiber under dynamic and static loading. J Mater Res Technol 2020;9. https://doi.org/10.1016/j.jmrt.2020.08.059.
[67] Ochoa-Cornejo F, Bobet A, Johnston CT, Santagata M, Sinfield J V. Cyclic behavior and pore pressure generation in sands with laponite, a super-plastic nanoparticle. Soil Dyn Earthq Eng 2016;88. https://doi.org/10.1016/j.soildyn.2016.06.008.
[68] Huang Y, Wen Z, Wang L, Zhu C. Centrifuge testing of liquefaction mitigation effectiveness on sand foundations treated with nanoparticles. Eng Geol 2019;249. https://doi.org/10.1016/j.enggeo.2019.01.005.
[69] Ochoa-Cornejo F, Bobet A, El Howayek A, Johnston CT, Santagata M, Sinfield J V. Discussion on: “Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles” [Eng.Geol.204:23–32]. Eng Geol 2017;216. https://doi.org/10.1016/j.enggeo.2016.11.015.
[70] Shahsavani S, Vakili AH, Mokhberi M. Effects of freeze-thaw cycles on the characteristics of the expansive soils treated by nanosilica and Electric Arc Furnace (EAF) slag. Cold Reg Sci Technol 2021;182. https://doi.org/10.1016/j.coldregions.2020.103216.
[71] Changizi F, Ghasemzadeh H, Ahmadi S. Evaluation of strength properties of clay treated by nano-SiO2 subjected to freeze–thaw cycles. Road Mater Pavement Des 2022;23. https://doi.org/10.1080/14680629.2021.1883466.
[72] Ahmadi S, Ghasemzadeh H, Changizi F. Effects of thermal cycles on microstructural and functional properties of nano treated clayey soil. Eng Geol 2021;280. https://doi.org/10.1016/j.enggeo.2020.105929.
[73] Akbari HR, Sharafi H, Goodarzi AR. Effect of polypropylene fiber and nano-zeolite on stabilized soft soil under wet-dry cycles. Geotext Geomembranes 2021;49. https://doi.org/10.1016/j.geotexmem.2021.06.001.
[74] Changizi F, Haddad A. Effect of nanocomposite on the strength parameters of soil. KSCE J Civ Eng 2017;21. https://doi.org/10.1007/s12205-016-1471-8.
[75] Padhi S, Behera A. Biosynthesis of Silver Nanoparticles: Synthesis, mechanism, and characterization. Agri-Waste Microbes Prod. Sustain. Nanomater., 2021. https://doi.org/10.1016/B978-0-12-823575-1.00008-1.