[1] Kuzmanović BO, Graham HJ. Shear Lag in Box Girders. J Struct Div 1981;107:1701–12. https://doi.org/10.1061/JSDEAG.0005777.
[2] Lee SC, Yoo CH, Yoon DY. Analysis of Shear Lag Anomaly in Box Girders. J Struct Eng 2002;128:1379–86. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:11(1379).
[3] Rovňák M, Ďuricová A. Discussion of “Analysis of Shear Lag Anomaly in Box Girders” by S. C. Lee, C. H. Yoo, and D. Y. Yoon. J Struct Eng 2004;130:1860–1. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1860).
[4] ZHOU S. Shear lag analysis of box girders. Eng Mech 2008;25:204–8.
[5] Foutch DA, Chang PC. A Shear Lag Anomaly. J Struct Div 1982;108:1653–8. https://doi.org/10.1061/JSDEAG.0005995.
[6] Singh GJ, Mandal S, Kumar R, Kumar V. Simplified Analysis of Negative Shear Lag in Laminated Composite Cantilever Beam. J Aerosp Eng 2020;33. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001100.
[7] Singh Y, Nagpal AK. Negative Shear Lag in Framed‐Tube Buildings. J Struct Eng 1994;120:3105–21. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:11(3105).
[8] Rovňák M, Rovňáková L. Discussion: Negative Shear Lag in Framed-Tube Buildings. J Struct Eng 1996;122:711–3. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:6(711).
[9] Khan FR, Amin NR. Analysis and design of framed tube structures for tall concrete buildings. Spec Publ 1972;36:39–60.
[10] Coull A, Bose B. Simplified analysis of frame-tube structures. J Struct Div 1975;101:2223–40.
[11] Haji‐Kazemi H, Company M. Exact method of analysis of shear lag in framed tube structures. Struct Des Tall Build 2002;11:375–88. https://doi.org/10.1002/tal.208.
[12] Mahjoub R, Rahgozar R, Saffari H. Simple method for analysis of tube frame by consideration of negative shear lag. Aust J Basic Appl Sci 2011;5:309–16.
[13] Leonard J. Investigation of shear lag effect in high-rise buildings with diagrid system 2007.
[14] Kim J, Lee Y. Seismic performance evaluation of diagrid system buildings. Struct Des Tall Spec Build 2012;21:736–49. https://doi.org/10.1002/tal.643.
[15] Zahiri-Hashemi R, Kheyroddin A, Farhadi B. Effective number of mega-bracing, in order to minimize shear lag. Struct Eng Mech 2013;48:173–93. https://doi.org/10.12989/sem.2013.48.2.173.
[16] Mazinani I, Jumaat MZ, Ismail Z, Chao OZ. Comparison of shear lag in structural steel building with framed tube and braced tube. Struct Eng Mech 2014;49:297–309. https://doi.org/10.12989/sem.2014.49.3.297.
[17] Gaur H, Goliya RK. Mitigating shear lag in tall buildings. Int J Adv Struct Eng 2015;7:269–79. https://doi.org/10.1007/s40091-015-0098-1.
[18] Shi Q, Zhang F. Simplified calculation of shear lag effect for high-rise diagrid tube structures. J Build Eng 2019;22:486–95. https://doi.org/10.1016/j.jobe.2019.01.009.
[19] Mashhadiali N, Molaei F, Siavoshi H. Investigation of shear lag effect in tall tube-type buildings. Structures 2021;34:4204–15. https://doi.org/10.1016/j.istruc.2021.10.035.
[20] Hafner I, Vlašić A, Kišiček T, Renić T. Parametric Analysis of the Shear Lag Effect in Tube Structural Systems of Tall Buildings. Appl Sci 2020;11:278. https://doi.org/10.3390/app11010278.
[21] Moghadasi M, Taeepoor S, Rahimian Koloor SS, Petrů M. The Effect of Lateral Load Type on Shear Lag of Concrete Tubular Structures with Different Plan Geometries. Crystals 2020;10:897. https://doi.org/10.3390/cryst10100897.
[22] Hoseini Vaez SR, Naderpour H, Kheyroddin A. The Effect of RC Core on Rehabilitation of Tubular Structures. J Rehabil Civ Eng 2014;2:63–74.
[23] Tabiee M, Abdoos H, Khaloo A. Concurrent effects of the shear-lag and warping torsion on the performance of non-rectangular RC shear walls. Arch Civ Mech Eng 2023;23:138. https://doi.org/10.1007/s43452-023-00663-1.
[24] Li J, Wang T, Li F, You Y, Kong Z. Experimental and numerical study on the shear lag behavior of l-shaped double-steel-plate composite shear wall. Structures 2023;47:1729–42. https://doi.org/10.1016/j.istruc.2022.11.103.
[25] Kumari S, Singh A, Mandal S. Effect of Terrain Category, Aspect Ratio and Number of Storeys on the Shear Lag Phenomenon in RCC Framed Tube Structures, 2022, p. 163–76. https://doi.org/10.1007/978-3-031-04793-0_12.
[26] Isyumov N, Poole M. Wind induced torque on square and rectangular building shapes. J Wind Eng Ind Aerodyn 1983;13:183–96. https://doi.org/10.1016/0167-6105(83)90140-X.
[27] Tallin A, Ellingwood B. Serviceability Limit States: Wind Induced Vibrations. J Struct Eng 1984;110:2424–37. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2424).
[28] Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Reston, VA: American Society of Civil Engineers; 2021. https://doi.org/10.1061/9780784415788.
[29] Commission C, Codes F. National Building Code of Canada Volume 1. vol. 1. 2020.
[30] Tc CEN. Eurocode 1 : Actions on structures — General actions — Part 1-4 : Wind actions Contents. Communities 2004;4:1–148.
[31] Standards B of I. Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures - Part 3: Wind Loads 2015.
[32] Singh GJ, Mandal S, Kumar R. Investigation on Shear Lag Phenomenon in RCC Framed Tube Structures. I-Manager’s J Struct Eng 2015;4:18–25. https://doi.org/10.26634/jste.4.3.3727.