DADmax/NADmax Ratio: Criterion for the Production and Selection of Demolition Aggregates with Low-Water Absorption

Document Type : Regular Paper


Civil Engineering Research Laboratory, Department of Civil Engineering and Hydraulic, Faculty of Sciences and Technology, Mohamed KHIDER University, 07000 Biskra, P.O.B. 145 RP, Algeria



The use of demolition aggregates (DAs) in second-generation concretes is an important issue, as they often have high water absorption, which affects the workability and durability of the cementitious materials incorporating them. This makes their direct use in structural concrete impossible. Previous studies have focused on downstream interventions aimed at improving the quality of DAs, such as eliminating old mortar (OM) adhered to natural aggregates (NAs) or limiting its absorption capacity. However, these approaches have proven to be expensive, time-consuming, and, for some, have health consequences. Our objective was to produce DAs suitable for use in structural concrete and to develop a simple, economical, and safe technique to generate good-quality DAs. We designed an upstream intervention based on the measurement of water absorption as a quality indicator. Seven ordinary concretes served as parent concretes (PCs), and after 28 days of maturation, the PC specimens were divided with a metal mass and then separated into ten different subfractions using standardized sieves. Three representative samples per subfraction were subjected to a twenty-minute water absorption evaluation, resulting in seventy arithmetic averages over 210 trials. Fractions (3/8), (8/16), and (16/25) were produced by clustering DA subfractions while emulating the granular distributions of NAs. The calculation of the DA fractions' water absorption was done based on the individual measurements obtained earlier. In the end, 21 average values were emerged. The maximum diameter of each DA (DADmax) was related to that of the NA of its parent concrete (NADmax), making it easier to distinguish between the most and least absorbent DAs. The ratios of 0.8 for the DA sub-fractions and 1 for the reconstituted DA fractions corresponded to DAs with the lowest water absorption capacity. For the DA sub-fractions, the minimum values are 12% to 82% below the average values and 28% to 89% below the maximum values. Similarly, DA fractions reconstituted from DA sub-fractions of the same PC showed a decrease in minimum values of 21% to 43% compared to average values and 31% to 58% compared to maximum values. Selecting the least absorbent DA sub-fractions without taking the PC into account resulted in a further reduction of 4% to 7% compared with the minimum values. The DADmax/NADmax ratio can therefore be used as a production and selection criterion for demolition aggregates.

Graphical Abstract

DADmax/NADmax Ratio: Criterion for the Production and Selection of Demolition Aggregates with Low-Water Absorption


  • Addressing the problem of high-water absorption of demolition aggregates (DAs).
  • Unlike previous studies, the intervention in this study takes place at the first stage of DAs preparation.
  • This work has less impact on cost, time and health.
  • Adherence to the DADmax/NADmax threshold ratio of 1 allows DAs to be produced with a minimum amount of adhesive mortar (OM).


Main Subjects

[1]     de Larrard F, Colina H. “Le béton recyclé.” French Institute of Science and Technology for Transport, Planning and Networks - Ifsttar14-20 boulevard Newton - Cité Descartes - Champs-sur-Marne - 77447 Marne-la-Vallée cedex 2; 2018.
[2]     Gangu, S. K., Sabavath S. Characteristics of Recycled Concrete Aggregate and its Implementation for Pavement Base Applications: A Review. J Rehabil Civ Eng 2023;11:131–52.
[3]     Weiqi Xing a, Vivian WY Tam a, Khoa N. Le a, Jian Li Hao b JW a. Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials. Constr Build Mater 2023;193:106947.
[4]     Bo W, Yan L, Fu Q, Kasal B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour Conserv Recycl 2022;171:105565.
[5]     Brahim Mazhoud, Thierry Sedran, Bogdan Cazacliu A, Cothenet J-MT. Influence of residual mortar volume on the properties of recycled concrete aggregates. J Build Eng 2022;57:104945.
[6]     Arabi N, Berredjem L. Valorisation des déchets de démolition comme granulats pour bétons. Déchets - Rev Francoph d’écologie Ind 2011:25–30.
[7]     Amara H, Arabi N, Perrot A. Unconventional tools for the study of the flow properties of concrete equivalent mortar based on recycled concrete aggregates. Environ Sci Pollut Res 2022;29:26739–58.
[8]     Zhao Z, Courard L, Remond S, Damidot D, Fiandaca T. Tentatives de prétraitement des granulats recyclés pour l’amélioration des bétons préfabriqués. 16e édition des Journées Sci. du Regroupement Francoph. pour la Rech. la Form. sur le Bét. (RF)2B, 2015, p. 1–9.
[9]     Hani Mokbel T. “Study of The Mechanical Properties of Recycled Aggregate Concrete.” Doctoral thesis, University of Damascus, Syria, 2014.
[10]   Kang M, Weibin L. Effect of the aggregate size on strength properties of recycled aggregate concrete. Adv Mater Sci Eng 2018;2018.
[11]   Théréné, F., Keita, E., Naël-Redolfi, J., Boustingorry, P., Bonafous, L., & Roussel N. Water absorption of recycled aggregates: Measurements, influence of temperature and practical consequences. Cem Concr Res 2020;137:106196.
[12]   de Juan MS, Gutiérrez PA. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 2009;23:872–7.
[13]   Hemmati Pourghashti, H., Madandous, R., Ranjbar M. Studying Tensile Strength of the Recycled Coarse Aggregate Concrete Using Double-Punch Test. J Rehabil Civ Eng 2022;10:100–20.
[14]   Guéguen Minerbe M, Martinez Hernandez H, Nour I, Pechaud Y, Sedran T. Impact de la biocarbonatation multicouche sur l’absorption d’eau d’un mortier. Acad J Civ Eng 2022;40:69–81.
[15]   Kaddah F, D FK, Ranaivomanana H, Amiri O, Rozière E. Accelerated carbonation of recycled concrete aggregates: Investigation on the microstructure and transport properties at cement paste and mortar scales. CO2 Util 2022;57:101885.
[16]   Fanara, A., Courard, L., Collin, F., & Hubert J. Transfer properties in recycled aggregates concrete: Experimental and numerical approaches. Constr Build Mater 2022;326:126778.
[17]   Wu, J., Zhang, Y., Zhu P et al. Microstructure of Recycled Aggregate Concrete Using Carbonated Recycled Coarse Aggregate. J Wuhan Univ Technol Sci Ed 2018;33:648–653.
[18]   Jingyu Yang a b, Yinchuan Guo a, Vivian W.Y. Tam b, Jingjing Tan a, Aiqin Shen a, Chong Zhang a JZ a. Feasibility of recycled aggregates modified with a compound method involving sodium silicate and silane as permeable concrete aggregates. Constr Build Mater 2022;361:129747.
[19]   Houria M, Nourredine A. Les granulats recyclés humidifiés : comportements des bétons frais et durcis n.d.:401–10.
[20]   Parmentier V, Michel F. Fixation du CO2 dans les blocs de beton à base de 2013:1–11.
[21]   LE T. Influence de l’humidité des granulats de béton recyclé sur le comportement à l’état frais et durcissant des mortiers. 2015.
[22]   Guerzou T, Mebrouki A, Castro-Gomes J. Study of concretes properties based on pre-saturated recycled aggregates. J Mater Eng Struct 2018;5:279–88.
[23]   Sereng M, Co D. “Amélioration des propriétés des granulats recyclés par stockage de CO2 : étude de la faisabilité pré-industrielle.” Paris-Est, 2021.
[24]   Braymand, S., Roux, S., Schlupp, F., & Mendoza HM. Carbonatation accélérée de granulats de béton recyclé–Évolution des propriétés selon leur classe granulaire. J Civ Eng 2022;40:76–9.
[25]   Djerbi, A., Cazacliu, B. B., Sereng, M., dos Reis, G. S., Metalssi, O. O., Jeong, J., ... & Torrenti JM. Stockage du CO2 dans les granulats recyclés: développement des procédés de carbonatation accélérée. Acad J Civ Eng 2022;40.
[26]   Abbas, A.; Fathifazl, G.; Isgor, O.B.; Razaqpur, A.G.; Fournier, B.; Foo S. Proposed method for determining the residual mortar content of recycled concrete aggregates. J ASTM Int 2007;5:1–12.
[27]   Forero, J.A.; Brito J d. ., Evangelista, L.; Pereira C, GOST 10060-87 (State Construction Committee of the USSR Moscow). Improvement of the Quality of Recycled Concrete Aggregate Subjected to Chemical Treatments: A Review. Materials (Basel) 2022;15:2740. ma15082740.
[28]   Tam, V.W.Y.; Tam, C.M.; Le KN. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resour Conserv Recycl 2007;50:82–101.
[29]   Wang, L.; Wang, J.; Qian, X.; Chen, P.; Xu, Y.; Guo J. An environmentally friendly method to improve the quality of recycled concrete aggregates. Constr Build Mater 2017;144:432–441.
[30]   Butler, L.; West, J.; Tighe S. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem Concr Res 2011;41:1037–1049.
[31]   Kim, H.-S.; Kim, B.; Kim, K.-S.; Kim J-M. Quality improvement of recycled aggregates using the acid treatment method and the strength characteristics of the resulting mortar. J Mater Cycles Waste Manag 2017;19:968–976.
[32]   Javier A. Forero, Jorge de Brito, Luís Evangelista  and CP. Improvement of the Quality of Recycled Concrete Aggregate Subjected to Chemical Treatments: A Review. Materials (Basel) 2022;15:2740. ma15082740.
[33]   Akbarnezhad, A.; Ong, K.; Zhang, M.; Tam C. Acid treatment technique for determining the mortar content of recycled concrete aggregates. J Test Eval 2013;41:441–450.
[34]   Al-Bayati, H.K.A.; Das, P.K.; Tighe, S.L.; Baaj H. Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate. Constr Build Mater 2016;112:284–298.
[35]   Ismail, S.; Ramli M. Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Constr Build Mater 2013;44:464–76.
[36]   Ismail, S.; Ramli M. Mechanical strength and drying shrinkage properties of concrete containing treated coarse recycled concrete aggregates. Constr Build Mater 2014;68:726–39.
[37]   Kim, Y.; Hanif, A.; Kazmi, S.M.S.; Munir, M.J.; Park C. Properties enhancement of recycled aggregate concrete through pretreatment of coarse aggregates—Comparative assessment of assorted techniques. J Clean Prod 2018;191:339–349.
[38]   Pandurangan, K.; Dayanithy, A.; Prakash SO. Influence of treatment methods on the bond strength of recycled aggregate. Concr Constr Build Mater 2016;120:212–221.
[39]   Purushothaman, R.; Amirthavalli, R.R.; Karan L. Influence of treatment methods on the strength and performance characteristics of recycled aggregate. J Mater Civ Eng 2014;27:04014168.
[40]   Saravanakumar, P.; Abhiram, K.; Manoj B. Properties of treated recycled aggregates and its influence on concrete strength characteristics. Constr Build Mater 2016;111:611–617.
[41]   Yin Jinming a b, Kang Aihong a, Xiao Peng a, Kou Changjiang a, Gong Yongfan a XC c. Influences of spraying sodium silicate based solution/slurry on recycled coarse aggregate. Constr Build Mater 2023;377:130924.
[42]   Braymand S. Separation and Quantification of Attached Mortar in Recycled Concrete Aggregates 2017:1393–407.
[43]   Jang, H.; Kim J. S, A. Effect of Aggregate Size on Recycled Aggregate Concrete under Equivalent Mortar Volume Mix Design. Appl Sci 2021;11:11274.
[44]   Zhao, Z., Xiao, J., Damidot, D., Rémond, S., Bulteel, D., Courard L. Quantification of the Hardened Cement Paste Content in Fine Recycled Concrete Aggregates by Means of Salicylic Acid Dissolution. Materials (Basel) 2022;15:3384.
[45]   NF P15-301. Hydraulic binders, Common cements, Composition, Specifications and Compliance Criteria, 1994.
[46]   NF EN 1008. Eau de gâchage pour bétons - Spécifications d’échantillonnage, d’essais et d’évaluation de l’aptitude à l’emploi, y compris les eaux des processus de l’industrie du béton, telle que l’eau de gâchage pour béton, 2003.
[47]   Dreux, G., Festa J. “Nouveau Guide du Béton et de ses Constituants.” 8th ed. Paris, France: Dreux, G., Festa, J. (1998), Nouveau Guide du Béton et de ses Constituants, 8th edition, Eyrolles, paris, France, ISBN 978-2-212-10231-4.; 1998.
[48]   Akroum K, Derdour D, Lagaguine M. Influence of the quality of parent concrete on the quality of son concrete: compression strength case. In: ICADET, editor. 4th Int. Conf. Adv. Eng. Technol. 28-30 Sept. 2022, 2022.
[49]   Kebaili B, Benzerara M, Menadi S, Kouider N, Belouettar R. Effect of parent concrete strength on recycled concrete performance. Frat Ed Integrità Strutt 2022;62:14–25.
[50]   NF P18-405. Concretes, Information tests, preparation and preservation of specimens, 1981.
[51]   NF EN 12350-2. Fresh Concrete Testing, Slump Testing, 1999.
[52]   NF P18-404. Study, suitability and control tests, Preparation and storage of test specimens, 1981.
[53]   NF EN 12390-1. Testing for hardened concrete, Part 1. Shape, dimensions and other requirements for specimens and molds, 2001.
[54]   Duan, Z.; Zhao, W.; Ye T., Zhang, Y.; Zhang C. Measurement of Water Absorption of Recycled Aggregate. Materials (Basel) 2022;15:5141.
[55]   Kun Liang, Yingjie Hou, Jianchun Sun, Xiaoguang Li, Jiahong Bai, Wei Tian YL. Theoretical analysis of water absorption kinetics of recycled aggregates immersed in water. Constr Build Mater 2021;302:124156.
[56]   Zhenhua Duan a, Qi Deng a, Jianzhuang Xiao a, Hanghua Zhang a b, Ahmed Nasr a, Long Li a b SZ a b. Early-stage water-absorbing behavior and mechanism of recycled coarse aggregate. Constr Build Mater 2023;394:132138.
[57]   NF EN 1097-6. Tests to determine the mechanical and physical properties of aggregates — Part 6: Determination of true density and water absorption coefficient, 2014.
[58]   Jeonghyun K. Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Constr Build Mater J 2022;328:127071.
[59]   MONTGOMERY DC. “Design and Analysis of Experiment.” 8th ed. Arizona State University; 2022.
[60]   E898-20 A standard. Standard Practice for Calibration of Non-Automatic Weighing Instruments, 2020.
[61]   ISO. Guidelines for the use of estimates of repeatability, reproducibility and accuracy in assessing measurement uncertainty, 2017.
[62]   ISO. Accuracy (trueness and precision) of results and measurement methods Part 2: Basic method for determining the repeatability and reproducibility of a standardized measurement method, 2019.