[1] Wang PH, Tseng TC, Yang CG. Initial shape of cable-stayed bridges. Comput Struct 1993;47:111–23.
[2] Chen DW, Au FTK, Tham LG, Lee PKK. Determination of initial cable forces in prestressed concrete cable-stayed bridges for given design deck profiles using the force equilibrium method. Comput Struct 2000;74:1–9. https://doi.org/10.1016/S0045-7949(98)00315-0.
[3] Janjic D, Pircher M, Pircher H. The unit load method-Some recent applications. Adv. Steel Struct., Elsevier; 2002, p. 831–7.
[4] Hosseini P, Kaveh A, Naghian A. The use of artificial neural networks and metaheuristic algorithms to optimize the compressive strength of concrete. Int J Optim Civ Eng 2023;13:327–38.
[5] Hosseini P, Kaveh A, Hatami N, Hoseini Vaez SR. The optimization of large-scale dome trusses on the basis of the probability of failure. Int J Optim Civ Eng 2022;12:457–75.
[6] Hosseini P, Kaveh A, Eng AN-IJOC, 2023 undefined. Development and optimization of self-compacting concrete mixes: Insights from artificial neural networks and computational approaches. IjoceIustAcIrP Hosseini, A Kaveh, A NaghianInt J Optim Civ Eng, 2023•ijoceIustAcIr 2023;13:457–76.
[7] Hosseini P, Kaveh A, Eng SHV-IJOC, 2022 undefined. Robust design optimization of space truss structures. IjoceIustAcIrP Hosseini, A Kaveh, SR Hoseini VaezInt J Optim Civ Eng, 2022•ijoceIustAcIr n.d.
[8] Ha M-H, Vu Q-A, Truong V-H. Optimum Design of Stay Cables of Steel Cable-stayed Bridges Using Nonlinear Inelastic Analysis and Genetic Algorithm. Structures 2018;16:288–302. https://doi.org/https://doi.org/10.1016/j.istruc.2018.10.007.
[9] Feng Y, Lan C, Briseghella B, Fenu L, Zordan T. Cable optimization of a cable-stayed bridge based on genetic algorithms and the influence matrix method. Eng Optim 2022;54:20–39. https://doi.org/10.1080/0305215X.2020.1850709.
[10] Lozano-Galant JA, Payá-Zaforteza I, Xu D, Turmo J. Analysis of the construction process of cable-stayed bridges built on temporary supports. Eng Struct 2012;40:95–106. https://doi.org/10.1016/j.engstruct.2012.02.005.
[11] Lee T-Y, Kim Y-H, Kang S-W. Optimization of tensioning strategy for asymmetric cable-stayed bridge and its effect on construction process. Struct Multidiscip Optim 2008;35:623–9. https://doi.org/10.1007/s00158-007-0172-9.
[12] Nazmy AS, Abdel-Ghaffar AM. Three-dimensional nonlinear static analysis of cable-stayed bridges. Comput Struct 1990;34:257–71. https://doi.org/10.1016/0045-7949(90)90369-D.
[13] Janjic D, Pircher M, Pircher H. Optimization of cable tensioning in cable-stayed bridges. J Bridg Eng 2003;8:131–7. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:3(131).
[14] Xue S-D, Lu J, Li X-Y, Liu R-J. IMPROVED FORCE ITERATION METHOD BASED ON RATIONAL SHAPE DESIGN SOLVING SELF-STRESS MODES OF CABLE-TRUSS TENSILE STRUCTURE. Adv Steel Constr 2020;16:170–80. https://doi.org/10.18057/IJASC.2020.16.2.8.
[15] Dehghani H, Dehghani E. Investigating the Impact Factor of Cable Stayed Bridges under the Passage of Moving Load at Different Speeds. Civ Infrastruct Res 2023;9:163–79. https://doi.org/10.22091/cer.2023.9813.1508.
[16] Souza Hoffman I, Manica Lazzari B, Campos A, Manica Lazzari P, Rodrigues Pacheco A. Finite element numerical simulation of a cable-stayed bridge construction through the progressive cantilever method. Struct Concr 2022;23:632–51. https://doi.org/10.1002/SUCO.202100662.
[17] Farré-Checa J, Komarizadehasl S, Ma H, Lozano-Galant JA, Turmo J. Direct simulation of the tensioning process of cable-stayed bridge cantilever construction. Autom Constr 2022;137:104197. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104197.
[18] Han DJ, Yan Q. Cable force adjustment and construction control. Bridg Eng Handb 2000.
[19] Wang PH, Tang TY, Zheng HN. Analysis of cable-stayed bridges during construction by cantilever methods. Comput Struct 2004;82:329–46. https://doi.org/10.1016/j.compstruc.2003.11.003.
[20] Erkmen RE, Bradford MA. Time-dependent creep and shrinkage analysis of composite beams curved in-plan. Comput Struct 2011;89:67–77. https://doi.org/10.1016/j.compstruc.2010.08.004.
[21] Lozano-Galant JA, Payá-Zaforteza I, Xu D, Turmo J. Forward Algorithm for the construction control of cable-stayed bridges built on temporary supports. Eng Struct 2012;40:119–30. https://doi.org/10.1016/j.engstruct.2012.02.022.
[22] Lozano-Galant JA, Ruiz-Ripoll L, Payá-Zaforteza I, Turmo J. Modifications of the stres-state of cable -stayed bridges due to staggered construction of their superstructure. Balt J Road Bridg Eng 2014;9:241–50. https://doi.org/10.3846/bjrbe.2014.30.
[23] Lozano-Galant JA, Dong X, Payá-Zaforteza I, Turmo J. Direct simulation of the tensioning process of cable-stayed bridges. Comput Struct 2013;121:64–75. https://doi.org/10.1016/j.compstruc.2013.03.010.
[24] Lozano-Galant JA, Turmo J. An algorithm for simulation of concrete cable-stayed bridges built on temporary supports and considering time dependent effects. Eng Struct 2014;79:341–53. https://doi.org/10.1016/j.engstruct.2014.08.018.
[25] Zhang J, Au FTK. Calibration of initial cable forces in cable-stayed bridge based on Kriging approach. Finite Elem Anal Des 2014;92:80–92. https://doi.org/https://doi.org/10.1016/j.finel.2014.08.007.
[26] Morgenthal G, Sham R, West B. Engineering the tower and main span construction of stonecutters bridge. J Bridg Eng 2010;15:144–52. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000042.
[27] Danai K, Civjan SA, Styckiewicz MM. Direct method of damage localization for civil structures via shape comparison of dynamic response measurements. Comput Struct 2012;92–93:297–307. https://doi.org/10.1016/j.compstruc.2011.10.016.
[28] Posenato D, Kripakaran P, Inaudi D, Smith IFC. Methodologies for model-free data interpretation of civil engineering structures. Comput Struct 2010;88:467–82. https://doi.org/10.1016/j.compstruc.2010.01.001.
[29] Chen W, Duan L. Bridge engineering handbook: construction and maintenance. 2014.
[30] Lozano-Galant JA, Xu D, Turmo J. Tensioning process update for cable stayed bridges. Proc. 4th Congrès Int. Géotechnique-Ouvrages-Structures CIGOS 2017, 26-27 October, Ho Chi Minh City, Vietnam 4, Springer; 2018, p. 283–7.
[31] Khan I, Shan D, Li Q, Nan F. Temperature effect on continuous modal parameter identification of cable stayed bridge. IABSE Conf. Struct. Eng. Provid. Solut. to Glob. Challenges, Geneva, Switzerland, Sept. 2015, 2015, p. 636–43.
[32] Wang H, Li A, Niu J, Zong Z, Li J. Long-term monitoring of wind characteristics at Sutong Bridge site. J Wind Eng Ind Aerodyn 2013;115:39–47.
[33] Felber A, Taylor PR, Griezic A, Bergman D, Torrejon JE. Erection Geometry and Stress Control of Composite Decked Cable-Stayed Bridges. IABSE Symp. Rep., vol. 84, 2001, p. 31–8.
[34] Wu J, Frangopol DM, Soliman M. Geometry control simulation for long-span steel cable-stayed bridges based on geometrically nonlinear analysis. Eng Struct 2015;90:71–82. https://doi.org/10.1016/j.engstruct.2015.02.007.
[35] Dollevoet R. Design of an Anti Head Check profile based on stress relief. Enschede Univ Twente Host 2010.
[36] Pham PT. Upper bound limit and shakedown analysis of elastic-plastic bounded linearly kinematic hardening structures. RWTH Aachen Univ 2011.
[37] Eyre DG. Shakedown of continuous bridges 1970.
[38] Chetnov HD. Investigations of shakedown of continuous beams under moving loads (in Russian) 1967.
[39] Lamblin DO, Save MA. Minimum-volume plastic design of beams for movable loads. Meccanica 1971;6:157–63.
[40] Cichoń C, Waszczyszyn Z. Shakedown of an Elastic-Plastic Arch Under Moving Load. J Struct Mech 1974;3:283–300.
[41] Cz. Cichoń ZW. Shakedown of an Elastic-Plastic Arch Under Moving Load. J Struct Mech 2007.
[42] Lyu J, Ichimiya M, Al BARI MA, SASAKI R, KASAHARA N. Study on ratcheting of beams under the combination of gravity and seismic load. Mech Eng J 2020;7:19–384.
[43] Shahraini SI, Kadkhodayan M. Ratcheting Analysis of Steel Plate under Cycling Loading using Dynamic Relaxation Method Experimentally Validated. Int J Eng 2021;34:1530–6.
[44] Kang G, Kan Q. Application of cyclic plasticity for modeling ratcheting in metals. Cycl. Plast. Met., Elsevier; 2022, p. 325–55.
[45] Lyu J, Ichimiya M, Sasaki R, Kasahara N. Ratcheting occurrence conditions of piping under sinusoidal excitations. Mech Eng J 2020;7:20–167.
[46] Fuyad STM, Al Bari MA, Makfidunnabi M, Nain HMZ, Özdemir ME, Yaylac\i M. Finite element analysis of ratcheting on beam under bending-bending loading conditions. Struct Eng Mech 2024;89:23–31.
[47] Hübel H, Vollrath B. Ratcheting caused by moving loads. Int J Adv Struct Eng 2017;9:139–52.
[48] Ernst JH. Der E-Modul von Seilen unter berucksichtigung des Durchhanges. Der Bauingenieur 1965;40:52–5.
[49] Baker J, Heyman J. Plastic design of frames 1 fundamentals. Cambridge University Press; 1969.
[50] Neal BG. The plastic methods of structural analysis. Wiley; 1963.
[51] Dehghani H, Dehghani E. Introducing a New Method for Construction of Cable-Stayed Bridges without the Need for Final Adjustment of Cable Tension. J Struct Constr Eng 2024. https://doi.org/10.22065/jsce.2024.404594.3161.