[1] Furinghetti M, Pavese A, Lunghi F, Silvestri D. Strategies of structural health monitoring for bridges based on cloud computing. J Civ Struct Heal Monit 2019;9:607–16. https://doi.org/10.1007/s13349-019-00356-5.
[2] Bayraktar A, Altunişik AC, Türker T. Structural health assessment and restoration procedure of an old riveted steel arch bridge. Soil Dyn Earthq Eng 2016;83:148–61. https://doi.org/10.1016/j.soildyn.2016.01.012.
[3] Jang S, Li J, Spencer BF. Corrosion Estimation of a Historic Truss Bridge Using Model Updating. J Bridg Eng 2013;18:678–89. https://doi.org/10.1061/(asce)be.1943-5592.0000403.
[4] Bonopera M, Liao WC, Perceka W. Experimental–theoretical investigation of the short-term vibration response of uncracked prestressed concrete members under long-age conditions. Structures, vol. 35, Elsevier; 2022, p. 260–73. https://doi.org/10.1016/j.istruc.2021.10.093.
[5] Yang J, Guo T, Li A. Experimental investigation on long-term behavior of prestressed concrete beams under coupled effect of sustained load and corrosion. Adv Struct Eng 2020;23:2587–96. https://doi.org/10.1177/1369433220919067.
[6] Gocál J, Odrobiňák J. On the influence of corrosion on the load-carrying capacity of old riveted bridges. Materials (Basel) 2020;13. https://doi.org/10.3390/ma13030717.
[7] Ataei S, Miri A, Jahangiri M. Assessment of load carrying capacity enhancement of an open spandrel masonry arch bridge by dynamic load testing. Int J Archit Herit 2017;11:1086–100. https://doi.org/10.1080/15583058.2017.1317882.
[8] Wang X, Mao X, Frangopol DM, Dong Y, Wang H, Tao P, et al. Full-scale experimental and numerical investigation on the ductility, plastic redistribution, and redundancy of deteriorated concrete bridges. Eng Struct 2021;234:111930. https://doi.org/10.1016/j.engstruct.2021.111930.
[9] Olaszek P, Łagoda M, Casas JR. Diagnostic load testing and assessment of existing bridges: examples of application. Struct Infrastruct Eng 2014;10:834–42. https://doi.org/10.1080/15732479.2013.772212.
[10] Dong C, Bas S, Debees M, Alver N, Catbas FN. Bridge Load Testing for Identifying Live Load Distribution, Load Rating, Serviceability and Dynamic Response. Front Built Environ 2020;6:46. https://doi.org/10.3389/fbuil.2020.00046.
[11] Sun Z, Siringoringo DM, Fujino Y. Load-carrying capacity evaluation of girder bridge using moving vehicle. Eng Struct 2021;229. https://doi.org/10.1016/j.engstruct.2020.111645.
[12] Gatti M. Structural health monitoring of an operational bridge: A case study. Eng Struct 2019;195:200–9. https://doi.org/10.1016/j.engstruct.2019.05.102.
[13] Lee ZK, Bonopera M, Hsu CC, Lee BH, Yeh FY. Long-term deflection monitoring of a box girder bridge with an optical-fiber, liquid-level system. Structures, vol. 44, Elsevier; 2022, p. 904–19. https://doi.org/10.1016/j.istruc.2022.08.048.
[14] Harris DK. Assessment of flexural lateral load distribution methodologies for stringer bridges. Eng Struct 2010;32:3443–51. https://doi.org/10.1016/j.engstruct.2010.06.008.
[15] Seo J, Phares B, Wipf TJ. Lateral Live-Load Distribution Characteristics of Simply Supported Steel Girder Bridges Loaded with Implements of Husbandry. J Bridg Eng 2014;19:4013021. https://doi.org/10.1061/(asce)be.1943-5592.0000558.
[16] Ravazdezh F, Seok S, Haikal G, Ramirez JA. Effect of Nonstructural Elements on Lateral Load Distribution and Rating of Slab and T-Beam Bridges. J Bridg Eng 2021;26:4021063. https://doi.org/10.1061/(asce)be.1943-5592.0001766.
[17] Hughs E, Idriss R. Live-Load Distribution Factors for Prestressed Concrete, Spread Box-Girder Bridge. J Bridg Eng 2006;11:573–81. https://doi.org/10.1061/(asce)1084-0702(2006)11:5(573).
[18] A Unified Approach for LRFD Live Load Moments in Bridge Decks by Christopher Higgins 1 , O. Tugrul Turan 2 , Robert J. Connor 3 , and Judy Liu 3 n.d.
[19] Specifications LBD. American Association of State Highway and Transportation Officials (AASHTO). Washington, DC, USA 2012.
[20] Alawneh M, Tadros M, Morcous G. Innovative System for Curved Precast Posttensioned Concrete I-Girder and U-Girder Bridges. J Bridg Eng 2016;21:4016076. https://doi.org/10.1061/(asce)be.1943-5592.0000938.
[21] Wu X, Li H. Experimental and analytical behavior of a prestressed U-shaped girder bridge. Struct Eng Mech 2017;61:427–36. https://doi.org/10.12989/sem.2017.61.3.427.
[22] SAP2000. Finite Element Analysis and Design of Structures 2004.
[23] CSI Bridge. Finite element analysis and design of bridges 2014.
[24] Tiwari S, Bhargava P. Load Distribution Factors for Composite Multicell Box Girder Bridges. J Inst Eng Ser A 2017;98:483–92. https://doi.org/10.1007/s40030-017-0243-x.
[25] Terzioglu T, Hueste MBD, Mander JB. Live Load Distribution Factors for Spread Slab Beam Bridges. J Bridg Eng 2017;22:4017067. https://doi.org/10.1061/(asce)be.1943-5592.0001100.
[26] Thakuria P, Talukdar S. Live Load Distribution Factor in Precast I-Girder Bridge. IOP Conf Ser Mater Sci Eng 2018;431. https://doi.org/10.1088/1757-899X/431/11/112012.
[27] Razzaq MK, Sennah K, Ghrib F. Live load distribution factors for simply-supported composite steel I-girder bridges. J Constr Steel Res 2021;181:106612. https://doi.org/10.1016/j.jcsr.2021.106612.
[28] Tarhini KM, Frederick GR. Wheel Load Distribution in I‐Girder Highway Bridges. J Struct Eng 1992;118:1285–94. https://doi.org/10.1061/(asce)0733-9445(1992)118:5(1285).
[29] Zokaie T, Imbsen RA, Osterkamp TA. Distribution of wheel loads on highway bridges. Transp Res Rec 1991;1290:119–26.
[30] Zokaie T. AASHTO-LRFD Live Load Distribution Specifications. J Bridg Eng 2000;5:131–8.
[31] Quadri AI, Ali K. Numerical Appraisal of Reinforced Concrete Dapped-End Girder Under High-Fatigue Fixed Pulsating and Moving Loads. Transp Res Rec 2024;2678:257–78. https://doi.org/10.1177/03611981231184176.
[32] Manual HC. Transportation Research Board of the National Academies. Washington, DC: 2010.
[33] AASHTO. “Standard Specifications for Highway Bridges American Association of State Highway and Transportation Officials”, ABD. 2002.