[1] V. C. Li, “Tailoring ECC for Special Attributes: A Review,” Int. J. Concr. Struct. Mater., vol. 6, no. 3, pp. 135–144, 2012, doi: 10.1007/s40069-012-0018-8.
[2] P. de O. Ribeiro, P. A. Krahl, R. Carrazedo, and L. F. A. Bernardo, “Modeling the Tensile Behavior of Fiber-Reinforced Strain-Hardening Cement-Based Comp.: A Review,” Materials (Basel)., vol. 16, no. 9, 2023, doi: 10.3390/ma16093365.
[3] V. C. Li and C. K. Y. Leung, “Steady‐State and Multiple Cracking of Short Random Fiber Composites,” J. Eng. Mech., vol. 118, no. 11, pp. 2246–2264, Nov. 1992, doi:10.1061/(ASCE)0733-9399(1992) 18: 11(2246).
[4] V. C. Li, Engineered Cementitious Composites (ECC). Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. doi: 10.1007/978-3-662-58438-5.
[5] V. C. Li, “From micromechanics to structural engineering - the design of cementitious composites for civil engineering applications,” Doboku Gakkai Rombun-Hokokushu/Proceedings Japan Soc. Civ. Eng., vol. 1993, no. 471 pt 1–24, pp. 1–12, Jul. 1993, doi: 10.2208/jscej.1993.471_1.
[6] T. Kanda and V. C. Li, “Practical design criteria for saturated pseudo strain hardening behavior in ECC,” J. Adv. Concr. Technol., vol. 4, no. 1, pp. 59–72, 2006, doi: 10.3151/jact.4.59.
[7] A. Dalvand, E. Sharififard, and F. Omidinasab, “Experimental investigation of mechanical and dynamic impact properties of high strength cementitious composite containing micro steel and PP fibers,” J. Rehabil. Civ. Eng., vol. 8, no. 4, pp. 73–89, 2020, doi: 10.22075/JRCE .2020.17480.1332.
[8] A. Sorzia, L. Lanzoni, amd E. Radi, "Pullout modelling of viscoelastic synthetic fibres for cementitious composites." Composite Structures, vol. 223, no. 110898, 2019, doi: 10.1016/ j.compstruct.2019.110898.
[9] F. C. Antico, J. Concha-Riedel, I. Valdivia, C.G. Herrera, and A. Utrera, "The fracture mechanical behavior of the interface between animal fibers, mortar, and earth matrices. A theoretical and experimental approach." Composites Part B: Engineering, vol. 254, no. 110568, 2023, doi: 10.1016/j.compositesb.2023.110568.
[10] S. Khandelwal and K.Y. Rhee, "Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface". Composites Part B: Engineering, vol. 192, no. 108011, 2020, doi: 10.1016/j.compositesb.2020.108011.
[11] H. Li, X. Li, J. Fu, N. Zhu, D. Chen, Y. Wang and S. Ding, "Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load." Construction and Building Materials, vol. 399, no. 132599, 2023, doi:10.1016/ j.conbuildmat.2023.132599.
[12] M. Fareghian, M. Afrazi and A. Fakhimi, "Soil reinforcement by waste tire textile fibers: small-scale experimental tests." Journal of Materials in Civil Engineering, vol.35(2), no. 04022402, 2023, 10.1061/ (ASCE)MT.1943-5533.0004574.
[13] Y. El Bitouri, B. Fofana, R. Léger, D. Perrin and P. Ienny, "The Effects of Replacing Sand with Glass Fiber-Reinforced Polymer (GFRP) Waste on the Mechanical Properties of Cement Mortars." Eng, vol. 5, no. 1, pp. 266-281, 2024, doi: 10.3390/eng5010014.
[14] D. V. B. De Lhoneux, R. Kalbskopf, P. Kim, V.C. Li, Z. Lin, “Development of High Tenacity Polypropylene Fibers for Cementitious Composites,” in JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) - Application and Evaluation, K. K. (Eds. . N. Konkurīto, Ed., Tokyo, Takayama: JCI, 2002, pp. 121–132.
[15] L. Yan, R.L. Pendleton, and C.H.M. Jenkins, "Interface morphologies in polyolefin fiber reinforced concrete composites." Composites Part A: Applied Science and Manufacturing, vol. 29, no: 5-6, pp. 643-650, doi:10.1016/S1359-835X (97)00114-0
[16] V. C. Li and S. Wang, “Microstructure variability and macroscopic composite properties of high performance fiber reinforced cementitious composites,” Probabilistic Eng. Mech., vol. 21, no. 3, pp. 201–206, Jul. 2006, doi: 10.1016/j.probengmech.2005.10.008.
[17] X. Wei, H. Zhu, Q. Chen, J.W. Ju, W. Cai, Z. Yan, and Y. Shen, "Microstructure-based prediction of UHPC's tensile behavior considering the effects of interface bonding, matrix spalling and fiber distribution." Cement and Concrete Composites, vol: 139, no: 105015, 2023, doi: 10.1016/j.cemconcomp.2023.105015.
[18] C. Redon, V. C. Li, C. Wu, H. Hoshiro, T. Saito, and A. Ogawa, “Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix,” J. Mater. Civ. Eng., vol. 13, no. 6, pp. 399–406, 2001, doi: 10.1061/(asce)0899-561(2001)13:6(399).
[19] L. V. C. Lin Z., Kanda T., “On Interface Property Characterization and Performance of Fiber Reinforced Cementitious Composites,” Concr. Sci. Eng., vol. 1, no. September, pp. 173–174, 1999.
[20] C. Lin, T. Kanstad, S. Jacobsen, and G. Ji, “Bonding property between fiber and cementitious matrix: A critical review,” Constr. Build. Mater., vol. 378, no. December 2022, p. 131169, 2023, doi: 10.1016/j.conbuildmat.2023.131169.
[21] Y. Huo, D. Lu, Z. Wang, Y. Liu, Z. Chen and Y. Yang, "Bending behavior of strain hardening cementitious composites based on the combined fiber-interface constitutive model." Computers & Structures, vol: 281, no: 107017, 2023, doi: 10.1016/j.compstruc.2023.107017.
[22] Katz A., Li. V. C. “A special technique for determining the bond strength of micro-fibres in cement matrix by pullout test,” J. Mater. Sci. Lett., vol. 15, pp. 1821–1823, 1996.
[23] J. K. Kim, J. S. Kim, G. J. Ha, and Y. Y. Kim, “Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag,” Cem. Concr. Res., vol. 37, no. 7, pp. 1096–1105, 2007, doi: 10.1016/j.cemconres. 2007.04.006.
[24] S. Singh, A. Shukla, and R. Brown, "Pullout behavior of polypropylene fibers from cementitious matrix." Cem. Concr. Res., vol. 34, no. 10, pp. 1919-1925, 2004, doi: 10.1016/j.cemconres.2004.02.014.
[25] T. Kanda, and V.C. Li, "New micromechanics design theory for pseudostrain hardening cementitious composite." Journal of engineering mechanics, vol: 125, no: 4, pp. 373-381, 1999.
[26] P. Schreier, C. Traßl and V. Altstädt, "Surface modification of polypropylene based particle foams." In AIP Conference Proceedings,vol. 1593, no: 1, pp. 378-382. American Institute of Physics, 2014.
[27] M. Sigrüner, G. Hüsken, S. Pirskawetz, J. Herz, D. Muscat and N. Strübbe, "Pull‐out behavior of polymer fibers in concrete." Journal of Polymer Science, vol: 61, no: 21, pp. 2708-2720, 2023, doi: 10.1002/ pol.20230264.
[28] B. Felekoglu, K. Tosun-Felekoglu, R. Ranade, Q. Zhang, and V. C. Li, “Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC,” Compos. Part B Eng., vol. 60, pp. 359–370, 2014, doi: 10.1016/j.compositesb. 2013.12.076.
[29] Y. W. Chan and S. H. Chu, “Effect of silica fume on steel fiber bond characteristics in reactive powder concrete,” Cem. Concr. Res., vol. 34, no. 7, pp. 1167–1172, 2004, doi: 10.1016/j.cemconres.2003.12.023.