[1] Boursier Niutta C, Wehrle EJ, Duddeck F, Belingardi G. Surrogate modeling in design optimization of structures with discontinuous responses. Struct Multidiscip Optim 2018;57:1857–69. https://doi.org/10.1007/s00158-018-1958-7.
[2] Faisal FW, Ashour SA. Mechanical properties of high-strength fiber reinforced concrete. ACI Mater J 1992;89:449–55.
[3] Khaloo A, Kim N. Mechanical Properties of Normal to High-Strength Steel Fiber-Reinforced Concrete. Cem Concr Aggregates 1996;18:92–7. https://doi.org/10.1520/CCA10156J.
[4] Nataraja MC, Dhang N, Gupta AP. Stress–strain curves for steel-fiber reinforced concrete under compression. Cem Concr Compos 1999;21:383–90. https://doi.org/10.1016/S0958-9465(99)00021-9.
[5] Song P., Hwang S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr Build Mater 2004;18:669–73. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
[6] Yazıcı Ş, İnan G, Tabak V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr Build Mater 2007;21:1250–3. https://doi.org/10.1016/j.conbuildmat.2006.05.025.
[7] Ou Y-C, Tsai M-S, Liu K-Y, Chang K-C. Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. J Mater Civ Eng 2012;24:207–15. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372.
[8] Adhikary BB, Mutsuyoshi H. Prediction of shear strength of steel fiber RC beams using neural networks. Constr Build Mater 2006;20:801–11. https://doi.org/10.1016/j.conbuildmat.2005.01.047.
[9] Thomas J, Ramaswamy A. Mechanical Properties of Steel Fiber-Reinforced Concrete. J Mater Civ Eng 2007;19:385–92. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
[10] Wang HT, Wang LC. Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr Build Mater 2013;38:1146–51. https://doi.org/10.1016/j.conbuildmat.2012.09.016.
[11] Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp Geotech 2023;38:100906. https://doi.org/10.1016/j.trgeo.2022.100906.
[12] Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 2023;47:1790–802. https://doi.org/10.1016/j.istruc.2022.12.007.
[13] Alilou VK, Teshnehlab M. Prediction of 28-day compressive strength of concrete on the third day using artificial neural networks. Int J Eng 2010;3:565–76.
[14] Chopra P, Sharma RK, Kumar M. Prediction of Compressive Strength of Concrete Using Artificial Neural Network and Genetic Programming. Adv Mater Sci Eng 2016;2016:1–10. https://doi.org/10.1155/2016/7648467.
[15] Khademi A, Behfarnia K, Kalman Šipoš T, Miličević I. The use of machine learning models in estimating the compressive strength of recycled brick aggregate concrete. Comput Eng Phys Model 2021;4:1–25.
[16] Hossain KMA, Gladson LR, Anwar MS. Modeling shear strength of medium- to ultra-high-strength steel fiber-reinforced concrete beams using artificial neural network. Neural Comput Appl 2017;28:1119–30. https://doi.org/10.1007/s00521-016-2417-2.
[17] Ahn N, Jang H, Park DK. Presumption of shear strength of steel fiber reinforced concrete beam using artificial neural network model. J Appl Polym Sci 2007;103:2351–8. https://doi.org/10.1002/app.25121.
[18] Abbas YM, Iqbal Khan M. Influence of Fiber Properties on Shear Failure of Steel Fiber Reinforced Beams Without Web Reinforcement: ANN Modeling. Lat Am J Solids Struct 2016;13:1483–98. https://doi.org/10.1590/1679-78252851.
[19] Açikgenç M, Ulaş M, Alyamaç KE. Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete. Arab J Sci Eng 2015;40:407–19. https://doi.org/10.1007/s13369-014-1549-x.
[20] Shende AM, Pande AM, Manchalwar S. Prediction of flexural Strength of SFRC form Concrete Strength without fibres. IOP Conf Ser Mater Sci Eng 2018;410:012023. https://doi.org/10.1088/1757-899X/410/1/012023.
[21] Kabir A, Hasan M, Miah K. Predicting 28 days compressive strength of concrete from 7 days test result. Proc. Int. Conf. Adv. Des. Constr. Struct., 2012, p. 18–22.
[22] Sharifi Y, Moghbeli A. Stepwise Regression for shear capacity assessment of steel fiber reinforced concrete beams. J Rehabil Civ Eng 2019;7:152–63.
[23] Kara IF. Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming. Neural Comput Appl 2013;23:823–34. https://doi.org/10.1007/s00521-012-0999-x.
[24] Sharifi Y, Moghbeli A. New predictive models via gene expression programming and multiple nonlinear regression for SFRC beams. J Mater Res Technol 2020;9:14294–306. https://doi.org/10.1016/j.jmrt.2020.10.026.
[25] Al-Musawi AA, Alwanas AAH, Salih SQ, Ali ZH, Tran MT, Yaseen ZM. Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model. Eng Comput 2020;36:1–11. https://doi.org/10.1007/s00366-018-0681-8.
[26] Kang M-C, Yoo D-Y, Gupta R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr Build Mater 2021;266:121117. https://doi.org/10.1016/j.conbuildmat.2020.121117.
[27] Keshtegar B, Bagheri M, Yaseen ZM. Shear strength of steel fiber-unconfined reinforced concrete beam simulation: Application of novel intelligent model. Compos Struct 2019;212:230–42. https://doi.org/10.1016/j.compstruct.2019.01.004.
[28] Sarveghadi M, Gandomi AH, Bolandi H, Alavi AH. Development of prediction models for shear strength of SFRCB using a machine learning approach. Neural Comput Appl 2019;31:2085–94. https://doi.org/10.1007/s00521-015-1997-6.
[29] Ahmadi M, Kheyroddin A, Dalvand A, Kioumarsi M. New empirical approach for determining nominal shear capacity of steel fiber reinforced concrete beams. Constr Build Mater 2020;234:117293. https://doi.org/10.1016/j.conbuildmat.2019.117293.
[30] Taghavi Parsa MH, Adlparvar MR, Esmaeili M. Machine Learning and Feature Selection Techniques for Predicting the Strength Properties of Steel Fiber Reinforced Concrete. J Struct Des Constr Pract 2022.
[31] Adlparvar MR, Esmaeili M, Taghavi Parsa MH. Strength properties of fiber reinforced concrete including steel fibers. World J Eng 2024;21:194–202. https://doi.org/10.1108/WJE-12-2021-0680.
[32] Adlparvar MR, Taghavi Parsa MH. The Improvement of the Tensile Behavior of CFRP and GFRP Laminates at Elevated Temperatures Using Fire Protection Mortar. J Rehabil Civ Eng 2021;9:41–54.
[33] Nematzadeh Z, Ibrahim R, Selamat A. Comparative studies on breast cancer classifications with k-fold cross validations using machine learning techniques. 2015 10th Asian Control Conf., IEEE; 2015, p. 1–6. https://doi.org/10.1109/ASCC.2015.7244654.
[34] Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, et al. Feature selection: A data perspective. ACM Comput Surv 2017;50:1–45. https://doi.org/10.1145/3136625.
[35] Bilbao I, Bilbao J. Overfitting problem and the over-training in the era of data: Particularly for Artificial Neural Networks. 2017 Eighth Int. Conf. Intell. Comput. Inf. Syst., IEEE; 2017, p. 173–7. https://doi.org/10.1109/INTELCIS.2017.8260032.
[36] Billard L, Diday E. Symbolic Regression Analysis, 2002, p. 281–8. https://doi.org/10.1007/978-3-642-56181-8_31.
[37] Weisberg S. Applied Linear Regression. Wiley; 2005. https://doi.org/10.1002/0471704091.
[38] McDonald GC. Ridge regression. WIREs Comput Stat 2009;1:93–100. https://doi.org/10.1002/wics.14.
[39] Ranstam J, Cook JA. LASSO regression. Br J Surg 2018;105:1348–1348. https://doi.org/10.1002/bjs.10895.
[40] Kotulski ZA, Szczepinski W. Error Analysis with Applications in Engineering. vol. 169. Dordrecht: Springer Netherlands; 2010. https://doi.org/10.1007/978-90-481-3570-7.
[41] Zheng D, Wu R, Sufian M, Kahla N Ben, Atig M, Deifalla AF, et al. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. Materials (Basel) 2022;15:5194. https://doi.org/10.3390/ma15155194.
[42] Li Y, Zhang Q, Kamiński P, Deifalla AF, Sufian M, Dyczko A, et al. Compressive Strength of Steel Fiber-Reinforced Concrete Employing Supervised Machine Learning Techniques. Materials (Basel) 2022;15:4209. https://doi.org/10.3390/ma15124209.