[1] Janaki AM, Shafabakhsh G, Hassani A. Evaluation of Mechanical Properties and Durability of Concrete Pavement Containing Electric Arc Furnace Slag and Carbon Nanostructures. J Rehabil Civ Eng 2023;11,:1–20. https://doi.org/10.22075/JRCE.2021.23149.1499.
[2] Mehrinejad Khotbehsara M, Zadshir M, Miyandehi BM, Mohseni E, Rahmannia S, Fathi S. Rheological, mechanical and durability properties of self-compacting mortar containing nano-TiO2 and fly ash. J Am Sci 2014;10:222–228.
[3] Mehdizadeh B, Vessalas K, Ben B, Castel A, Deilami S, Asadi H. Advances in Characterization of Carbonation Behavior in Slag-Based Concrete Using Nanotomography. Nanotechnol. Constr. Circ. Econ. (NICOM 2022), Melbourne: 2023, p. 297–308. https://doi.org/10.1007/978-981-99-3330-3_30.
[4] Mehdizadeh Miyandehi B, Vessalas K, Castel A, Mortazavi M. Investigation of Carbonation Behaviour in High-Volume GGBFS Concrete for Rigid Road Pavements. 7th Concr. Pavements Conf., Wollongong: ASCP (Australian Society for Concrete Pavements); 2023.
[5] Parvin YA, Shaghaghi TM, Pourbaba M, Mirrezaei SS, Zandi Y. Flexural behavior of UHPC beams reinforced with macro-steel fibers and different ratios of steel and GFRP bars. J Rehabil Civ Eng 2024;12,:41–57. https://doi.org/DOI: 10.22075/JRCE.2023.28070.1695.
[6] Qian WM, Vahid MH, Sun YL, Heidari A, Barbaz-Isfahani R, Saber-Samandari S, et al. Investigation on the effect of functionalization of single-walled carbon nanotubes on the mechanical properties of epoxy glass composites: Experimental and molecular dynamics simulation. J Mater Res Technol 2021;12:1931–45. https://doi.org/10.1016/j.jmrt.2021.03.104.
[7] Arboleda D. Fabric Reinforced Cementitious Matrix (FRCM) Composites for Infrastructure Strengthening and Rehabilitation: Characterization Methods. Fac Univ Miami 2014.
[8] Rai A, Joshi YP. Applications and properties of fibre reinforced concrete. J Eng Res Appl 2014;4:123–31.
[9] Osgouei YB, Tafreshi ST, Pourbaba M. Flexural Properties of UHPFRC Beams with an Initial Notch. J Rehabil Civ Eng 2023;11:141–77. https://doi.org/10.22075/JRCE.2022.25513.1576.
[10] Simonsson E. Complex shapes with textile reinforced concrete-An investigation of structural form, material and manufacturing. Master of Science Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, Gothenburg, Sweden., 2017.
[11] Friese D, Scheurer M, Hahn L, Gries T, Cherif C. Textile reinforcement structures for concrete construction applications––a review. J Compos Mater 2022;56,:4041–64. https://doi.org/10.1177/00219983221127181.
[12] Rossi E, Randl N, Mészöly T, Harsányi P. Flexural strengthening with fiber-/textile-reinforced concrete. ACI Struct J 2021;118,:97. https://doi.org/10.14359/51732647.
[13] Nanni A. Concrete repair with externally bonded FRP reinforcement. Concr Int 1995;17,:22–6.
[14] Pirah JA, Mydin MAO, Nawi MNM, Omar R. Innovative Application of Interwoven Fiberglass Mesh to Strengthen Lightweight Foamed Concrete. J Adv Res Appl Sci Eng Technol 2022;28,:165–76. https://doi.org/10.37934/araset.28.3.165176.
[15] Jabr A. Flexural Strengthening of RC beams using Fiber Reinforced Cementitious Matrix. Phd Thesis, University of Windsor (Canada), 2017.
[16] Mat Serudin A, Othuman Mydin MA, Mohd Nawi MN, Deraman R, Sari MW, Abu Hashim MF. The Utilization of a Fiberglass Mesh–Reinforced Foamcrete Jacketing System to Enhance Mechanical Properties. Materials (Basel) 2022;15,:1–17. https://doi.org/10.3390/ma15175825.
[17] Ombres L. Concrete confinement with a cement based high strength composite material. Compos Struct 2014;109,:294–304. https://doi.org/10.1016/j.compstruct.2013.10.037.
[18] ACI-549.4R-13. Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures. Am Concr Instutute 2013.
[19] Ramezani A, Esfahani MR, Sabzi J. Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricated with custom-designed mortar and fabrics. Front Struct Civ Eng 2023;17,:1100–1116. https://doi.org/10.1007/s11709-023-0967-9.
[20] Faleschini F, Zanini MA, Hofer L, Toska K, De Domenico D, Pellegrino C. Confinement of reinforced concrete columns with glass fiber reinforced cementitious matrix jackets. Eng Struct 2020;218,:110847. https://doi.org/10.1016/j.engstruct.2020.110847.
[21] Chazallon C, Barazzutti C, Pelletier H, Nguyen ML, Hornych P, Mouhoubi S, et al. Reproduction of geogrid in situ damage used in asphalt concrete pavement with indentation tests. J Test Eval 2020;48,:60–71. https://doi.org/10.1520/JTE20180929.
[22] Lesueur D, Leguernevel G, Riot M. On the performance of geogrids for asphalt pavement reinforcement: laboratory evaluation and selected case studies. 7th E&E Congr 2021:1–11.
[23] Meng X, Chi Y, Jiang Q, Liu R, Wu K, Li S. Experimental investigation on the flexural behavior of pervious concrete beams reinforced with geogrids. Constr Build Mater 2019;215,:275–84. https://doi.org/10.1016/j.conbuildmat.2019.04.217.
[24] Tang X, Higgins I, Jlilati MN. Behavior of geogrid-reinforced Portland cement concrete under static flexural loading. Infrastructures 2018;3,:1–12. https://doi.org/10.3390/infrastructures3040041.
[25] Tang X, Chehab GR, Kim S. Laboratory study of geogrid reinforcement in Portland cement concrete. Proc 6th RILEM Int Conf Crack Pavements CRC Press Taylor Fr Group, London 2008:769–78. https://doi.org/10.1201/9780203882191.ch75.
[26] Al-Hedad ASA, Bambridge E, Hadi MNS. Influence of geogrid on the drying shrinkage performance of concrete pavements. Constr Build Mater 2017;146,:165–74. https://doi.org/10.1016/j.conbuildmat.2017.04.076.
[27] Erfan AM, Hassan HE, Hatab KM, El-Sayed TA. The flexural behavior of nano concrete and high strength concrete using GFRP. Constr Build Mater 2020;247,:118664. https://doi.org/10.1016/j.conbuildmat.2020.118664.
[28] Ahmed HQ, Jaf DK, Yaseen SA. Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars. Constr Build Mater 2020;231,:117185. https://doi.org/10.1016/j.conbuildmat.2019.117185.
[29] ASTM-C136/C136M. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM Int WwwAstmOrg 2019.
[30] ASTM-C29 / C29M-17a. Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM Int WwwAstmOrg 2017.
[31] ASTM-C566-19. Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying. ASTM Int WwwAstmOrg 2019.
[32] ASTM-C127-15. Standard Test Method for Density , Relative Density ( Specific Gravity ), and Absorption of Coarse Aggregate. ASTM Int WwwAstmOrg 2013.
[33] ASTM-C-128. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM Int WwwAstmOrg 2015.
[34] ASTM-C33/C33M - 18. Standard Specification for Concrete Aggregates. ASTM Int WwwAstmOrg 2018.
[35] ASTM-C188-17. Standard test method for density of hydraulic cement. ASTM Int WwwAstmOrg 2017.
[36] ASTM-C191-18. Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM Int WwwAstmOrg 2018.
[37] ASTM-C109/109M-16a. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or cube specimens). ASTM Int WwwAstmOrg 2016.
[38] ACI-211.1-91. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. Am Concr Institute Comm 1991.
[39] ASTM-C143/C143M. Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM Int WwwAstmOrg 2015.
[40] ASTM-C138/C138M − 17a. Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM Int WwwAstmOrg 2017.
[41] ASTM-C39/C39M-18. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM Int WwwAstmOrg 2018.
[42] ACI-308. Guide to Curing Concrete. Am Concr InstituteInstitute 2001.
[43] ASTM-C293. Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading). ASTM Int WwwAstmOrg 2016.