[1] Ahmad DH, Alhayani AA. Investigation the influence of nano ceramic on the mechanical properties and shrinkage of lightweight concrete containing silica fume. Mater Today Proc 2022;61:1140–8. https://doi.org/10.1016/j.matpr.2021.11.540.
[2] Afzali Naniz O, Mazloom M. Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete. J Build Eng 2018;20:400–10. https://doi.org/10.1016/j.jobe.2018.08.014.
[3] Choi S-J, Mun J-S, Yang K-H, Kim S-J. Compressive fatigue performance of fiber-reinforced lightweight concrete with high-volume supplementary cementitious materials. Cem Concr Compos 2016;73:89–97. https://doi.org/10.1016/j.cemconcomp.2016.07.007.
[4] Mohamed AM, Tayeh BA, Abu Aisheh YI, Salih MNA. Exploring the performance of steel fiber reinforced lightweight concrete: A case study review. Case Stud Constr Mater 2023;18:e01968. https://doi.org/10.1016/j.cscm.2023.e01968.
[5] Shale E. Chapter 9 Lightweight Concrete. High-Performance Light. Concr., vol. 84117, 2007.
[6] Thienel KC, Haller T, Beuntner N. Lightweight concrete-from basics to innovations. Materials (Basel) 2020;13:1–24. https://doi.org/10.3390/ma13051120.
[7] Raithby KD, Ydon FDL. The Intemational Joumal o f Cement Composites and Lightweight Concrete Volume 2 Number 3 Lightweight concrete in highway bridges. Intemational Joumal o f Cem Compos Light Concr 1981;2(3).
[8] Mehrinejad Khotbehsara M, Zadshir M, Mehdizadeh Miyandehi B, Mohseni E, Rahmannia S, Fathi S. Rheological, mechanical and durability properties of self-compacting mortar containing nano-TiO2 and fly ash. J Am Sci 2014;10:222–228.
[9] Karthika RB, Vidyapriya V, Nandhini Sri KV, Merlin Grace Beaula K, Harini R, Sriram M. Experimental study on lightweight concrete using pumice aggregate. Mater Today Proc 2021;43:1606–13. https://doi.org/10.1016/j.matpr.2020.09.762.
[10] Pravallika BD, Rao KV. The Study on Strength Properties of Light Weight Concrete using Light Weight Aggregate. Int J Sci Res 2016;5:1735–9. https://doi.org/10.21275/v5i6.NOV164521.
[11] Nadesan MS, Dinakar P. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete. Case Stud Constr Mater 2017;7:336–47. https://doi.org/10.1016/j.cscm.2017.09.005.
[12] Uma SG, Muthulakshmi S, Hemalatha G. Study on light weight concrete using steel cinders. Mater Today Proc 2021;46:3813–6. https://doi.org/10.1016/j.matpr.2021.02.039.
[13] Zhao M, Zhao M, Chen M, Li J, Law D. An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete. Constr Build Mater 2018;183:493–501. https://doi.org/10.1016/j.conbuildmat.2018.06.178.
[14] Omar AT, Hassan AAA. Behaviour of expanded slate semi-lightweight SCC beams with improved cracking performance and shear capacity. Structures 2021;32:1577–88. https://doi.org/10.1016/j.istruc.2021.03.108.
[15] Berger RL. Properties Of Concrete With Cement Clinker Aggregate. Cem Concr Res 1974;4:99-I12.
[16] Kockal NU, Ozturan T. Durability of lightweight concretes with lightweight fly ash aggregates. Constr Build Mater 2011;25:1430–1438. https://doi.org/10.1016/j.conbuildmat.2010.09.022.
[17] Mehdizadeh B, Vessalas K, Ben B, Castel A, Deilami S, Asadi H. Advances in Characterization of Carbonation Behavior in Slag-Based Concrete Using Nanotomography. Nanotechnol. Constr. Circ. Econ. (NICOM 2022), Melbourne: 2023, p. 297–308. https://doi.org/10.1007/978-981-99-3330-3_30.
[18] Zhang P, Xie N, Cheng X, Feng L, Hou P, Wu Y. Low dosage nano-silica modification on lightweight aggregate concrete. Nanomater Nanotechnol 2018;8. https://doi.org/10.1177/1847980418761283.
[19] Cunha FG, Sampaio ZLM, Martinelli AE. Fiber-reinforced lightweight concrete formulated using multiple residues. Constr Build Mater 2021;308:125035. https://doi.org/10.1016/j.conbuildmat.2021.125035.
[20] Alex XI, Arunachalam K. Flexural behavior of fiber reinforced lightweight concrete, 2019. https://doi.org/10.7764/RDLC.18.3.536.
[21] Zaid O, Abdulwahid Hamah Sor N, Martínez-García R, de Prado-Gil J, Mohamed Elhadi K, Yosri AM. Sustainability evaluation, engineering properties and challenges relevant to geopolymer concrete modified with different nanomaterials: A systematic review. Ain Shams Eng J 2024;15:102373. https://doi.org/10.1016/j.asej.2023.102373.
[22] Federowicz K, Techman M, Sanytsky M, Sikora P. Modification of Lightweight Aggregate Concretes with Silica Nanoparticles—A Review. Materials (Basel) 2021;14:4242. https://doi.org/10.3390/ma14154242.
[23] Mishra A, Swarup A. A Review on an Investigation into the Role of Nano-Silica with Light Weight Concrete for Better Replacement of Coarse Aggregate. IJARIIE-ISSN 2020;6.
[24] Al-Luhybi AS, Altalabani D. The Influence of Nano-Silica on the Properties and Microstructure of Lightweight Concrete: a Review. IOP Conf Ser Mater Sci Eng 2021;1094:012075. https://doi.org/10.1088/1757-899X/1094/1/012075.
[25] Abbas A-GN, Aziz FNAA, Abdan K, Nasir NAM, Huseien GF. A state-of-the-art review on fibre-reinforced geopolymer composites. Constr Build Mater 2022;330:127187. https://doi.org/10.1016/j.conbuildmat.2022.127187.
[26] Givi AN, Suraya Abdul Rashid, Aziz FNA, Salleh MAM. The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete. Compos Part B 2011. https://doi.org/10.1016/j.compositesb.2010.10.002.
[27] Xu QL, Meng T, Huang MZ. Effects of Nano-CaCO3 on the Compressive Strength and Microstructure of High Strength Concrete in Different Curing Temperature. Appl Mech Mater 2011;121–126:126–31. https://doi.org/10.4028/www.scientific.net/AMM.121-126.126.
[28] Lin YH, Tyan YY, Chang TP, Chang CY. An assessment of optimal mixture for concrete made with recycled concrete aggregates. Cem Concr Res 2004;34:1373–80. https://doi.org/10.1016/j.cemconres.2003.12.032.
[29] Joanna PS, Raj CD, Jacob N, Jonson S, Parvati TS. Performance of Sustainable Nano Concrete. Int J Eng Adv Technol 2019;9:3160–3. https://doi.org/10.35940/ijeat.b4217.129219.
[30] Sulaiman TA, Yau, Hashim YM. Effect Of Nanosilica As Ad-Mixture In Light Weight Concrete. FUDMA J Sci 2019;3 No. 4:412 – 417.
[31] Hamad MA-A, Sarhan IA. Effect of Nano-Clay on Lightweight Self-Compacting Concrete Behavior. Knowlodge-Based Eng Scince 2021. https://doi.org/10.51526/kbes.2021.2.3.1-22.
[32] Yousefi A, Tang W, Khavarian M, Fang C, Wang S. Thermal and mechanical properties of cement mortar composite containing recycled expanded glass aggregate and nano titanium dioxide. Appl Sci 2020;10. https://doi.org/10.3390/app10072246.
[33] Jalali Mosallam S, Pesaran Behbahani H, Shahpari M, Abaeian R. The effect of carbon nanotubes on mechanical properties of structural lightweight concrete using LECA aggregates. Structures 2022;35:1204–18. https://doi.org/10.1016/j.istruc.2021.09.003.
[34] Qing Y, Zenan Z, Deyu K, Rongshen C. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 2007;21:539–45. https://doi.org/10.1016/j.conbuildmat.2005.09.001.
[35] Hong X, Lee JC, Ng JL, Md Yusof Z, He Q, Li Q. Effect of Graphene Oxide on the Mechanical Properties and Durability of High-Strength Lightweight Concrete Containing Shale Ceramsite. Materials (Basel) 2023;16. https://doi.org/10.3390/ma16072756.
[36] Narasimman K, Jassam TM, Velayutham TS, Yaseer MMM, Ruzaimah R. The synergic influence of carbon nanotube and nanosilica on the compressive strength of lightweight concrete. J Build Eng 2020;32:101719. https://doi.org/10.1016/j.jobe.2020.101719.
[37] Wang XF, Huang YJ, Wu GY, Fang C, Li DW, Han NX, et al. Effect of nano-SiO2 on strength, shrinkage and cracking sensitivity of lightweight aggregate concrete. Constr Build Mater 2018;175:115–25. https://doi.org/10.1016/j.conbuildmat.2018.04.113.
[38] Sekhavati P, Jafarkazemi M, Kaya Ö. Investigating Durability Behavior and Compressive Strength of Lightweight Concrete Containing the Nano-Silica and Nano Lime Additives In the Acid Environment. J Civ Eng Mater Appl 2019;3:109–17. https://doi.org/10.22034/JCEMA.2019.93622.
[39] Adhikary SK, Rudzionis Z, Ghosh R. Influence of CNT, graphene nanoplate and CNT-graphene nanoplate hybrid on the properties of lightweight concrete. Mater Today Proc 2021;44:1979–82. https://doi.org/10.1016/j.matpr.2020.12.115.
[40] Elrahman MA, Chung SY, Sikora P, Rucinska T, Stephan D. Influence of nanosilica on mechanical properties, sorptivity, and microstructure of lightweight concrete. Mater MDPI 2019;12:1–16. https://doi.org/10.3390/ma12193078.
[41] Afzali-Naniz O, Mazloom M. Assessment of the influence of micro- and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design. Asian J Civ Eng 2019;20:57–70. https://doi.org/10.1007/s42107-018-0088-2.
[42] Sugumaran B, Lavanya G. Characterization study on the synergistic effect of nano metakaolin and expansive agent on the shrinkage mitigation and strength enhancement of self curing-self compacting concrete. Rev Rom Mater Rom J Mater 2021;51:186–94.
[43] Keleştemur O, Demirel B. Effect of metakaolin on the corrosion resistance of structural lightweight concrete. Constr Build Mater 2015;81:172–8. https://doi.org/10.1016/j.conbuildmat.2015.02.049.
[44] Shoukry H, Kotkata MF, Abo-EL-Enein SA, Morsy MS, Shebl SS. Enhanced physical, mechanical and microstructural properties of lightweight vermiculite cement composites modified with nano metakaolin. Constr Build Mater J 2016.
[45] Karahan O, Hossain KMA, Ozbay E, Lachemi M, Sancak E. Effect of metakaolin content on the properties self-consolidating lightweight concrete. Constr Build Mater 2012;31:320–5. https://doi.org/10.1016/j.conbuildmat.2011.12.112.
[46] Du Y, Korjakins A. Synergic Effects of Nano Additives on Mechanical Performance and Microstructure of Lightweight Cement Mortar. Appl Sci 2023;13:1–23. https://doi.org/10.3390/app13085130.
[47] Mohseni E, Mehrinejad Khotbehsara M, Naseri F, Sarker P. Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina. Constr Build Mater 2016.
[48] Joshaghani A, Balapour M, Mashhadian M, Ozbakkaloglu T. Effects of nano-TiO2, nano-Al2O3, and nano-Fe2O3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Constr Build Mater 2020;245:118444. https://doi.org/10.1016/j.conbuildmat.2020.118444.
[49] Riahi S, Nazari A. Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles. Energy Build 2011. https://doi.org/10.1016/j.enbuild.2011.04.009.
[50] Sun Y, Zhang P, Guo W, Bao J, Qu C. Effect of Nano-CaCO3 on the Mechanical Properties and Durability of Concrete Incorporating Fly Ash. Adv Mater Sci Eng 2020;2020. https://doi.org/10.1155/2020/7365862.
[51] Shabbar R, Nedwell P, Wu Z. Mechanical properties of lightweight aerated concrete with different aluminium powder content. MATEC Web Conf 2017;120:1–7. https://doi.org/10.1051/matecconf/201712002010.
[52] Ghanbari M, Kohnehpooshi O, Tohidi M. Experimental study of the combined use of fiber and nano silica particles on the properties of lightweight self compacting concrete. Int J Eng Trans B Appl 2020;33:1499–511. https://doi.org/10.5829/ije.2020.33.08b.08.
[53] Nazari A, Riahi S. Retraction Note to: Effects of CuO nanoparticles on compressive strength of self-compacting concrete. Sadhana - Acad Proc Eng Sci 2022;47:371–91. https://doi.org/10.1007/s12046-022-02043-6.
[54] Othuman Mydin MA, Jagadesh P, Bahrami A, Dulaimi A, Özkılıç YO, Al Bakri Abdullah MM, et al. Use of calcium carbonate nanoparticles in production of nano-engineered foamed concrete. J Mater Res Technol 2023;26:4405–22. https://doi.org/10.1016/j.jmrt.2023.08.106.
[55] Nazari A, Givi AN. The effects of nano-Al2O3 particle size on the split tensile and flexural strength of binary blended concrete. J Am Sci 2010;6:94–7.
[56] Othuman Mydin MA, Mohd Nawi MN, Mohamed O, Sari MW. Mechanical Properties of Lightweight Foamed Concrete Modified with Magnetite (Fe3O4) Nanoparticles. Materials (Basel) 2022;15. https://doi.org/10.3390/ma15175911.
[57] Saad O, S. Ragab K, Elnawawy O, R. Alharbi Y, A. Abadel A, Talaat A, et al. Lightweight Structural Concrete. J Eng Res 2021. https://doi.org/10.36909/jer.12219.
[58] Asil MB, Ranjbar MM. Hybrid effect of carbon nanotubes and basalt fibers on mechanical, durability, and microstructure properties of lightweight geopolymer concretes. Constr Build Mater 2022;357. https://doi.org/10.1016/j.conbuildmat.2022.129352.
[59] Ali HH, Awad HK. The Influence of Nano-Silica on Some Properties of Light Weight Self-Compacting Concrete Aggregate. E3S Web Conf 2023;427:02008. https://doi.org/10.1051/e3sconf/202342702008.
[60] Atmaca N, Abbas ML, Atmaca A. Effects of nano-silica on the gas permeability, durability and mechanical properties of high-strength lightweight concrete. Constr Build Mater 2017;147:17–26. https://doi.org/10.1016/j.conbuildmat.2017.04.156.
[61] Heidarzad Moghaddam H, Maleki A, Lotfollahi-Yaghin MA. Durability and mechanical properties of self-compacting concretes with combined use of aluminium oxide nanoparticles and glass fiber. Int J Eng Trans A Basics 2021;34:26–38. https://doi.org/10.5829/IJE.2021.34.01A.04.
[62] Garg R, Garg R, Eddy NO, Khan MA, Khan AH, Alomayri T, et al. Mechanical strength and durability analysis of mortars prepared with fly ash and nano-metakaolin. Case Stud Constr Mater 2023;18:e01796. https://doi.org/10.1016/j.cscm.2022.e01796.
[63] Du H, Du S, Liu X. Effect of nano-silica on the mechanical and transport properties of lightweight concrete. Constr Build Mater 2015;82:114–22. https://doi.org/10.1016/j.conbuildmat.2015.02.026.
[64] Ismail OS, Nawawy OAE-, Ragab KS, Kohail M. Performance of the lightweight concrete with available nano-silica in case fully replacement of coarse aggregate. Int J Sci Eng Res 2018;9:223–31.
[65] Fahmy NG, Hussien RM, el-Hafez LMA, Mohamed RAS, Faried AS. Comparative study on fresh, mechanical, microstructures properties and corrosion resistance of self compacted concrete incorporating nanoparticles extracted from industrial wastes under various curing conditions. J Build Eng 2022;57. https://doi.org/10.1016/j.jobe.2022.104874.
[66] Samadi MHASL, Shah K, Huseien GF. Influence of Glass Silica Waste Nano Powder on the Mechanical and Microstructure Properties of Alkali-Activated Mortars. Nanomater Artic 2020;10:0–21. https://doi.org/doi:10.3390/nano10020324.
[67] Behfarnia K, Rostami M. Effects of micro and nanoparticles of SiO 2 on the permeability of alkali activated slag concrete. Constr Build Mater 2017;131:205–13. https://doi.org/10.1016/j.conbuildmat.2016.11.070.
[68] Ibrahim M, Johari MAM, Maslehuddin M, Rahman MK. Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr Build Mater 2018;173:573–85. https://doi.org/10.1016/j.conbuildmat.2018.04.051.
[69] Li H, Xiao H, Yuan J, Ou J. Microstructure of cement mortar with nano-particles. Compos Part B Eng 2004;35:185–9. https://doi.org/10.1016/S1359-8368(03)00052-0.
[70] Heikal M, Ibrahim NS. Hydration, microstructure and phase composition of composite cements containing nano-clay. Constr Build Mater 2016;112:19–27. https://doi.org/10.1016/j.conbuildmat.2016.02.177.
[71] Zhang C, Khorshidi H, Najafi E, Ghasemi M. Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. J Clean Prod 2023;384. https://doi.org/10.1016/j.jclepro.2022.135390.
[72] Ng C, Alengaram UJ, Wong LS, Mo KH, Jumaat MZ, Ramesh S. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr Build Mater 2018;186:550–76. https://doi.org/10.1016/j.conbuildmat.2018.07.075.
[73] Abdalla JA, Thomas BS, Hawileh RA, Syed Ahmed Kabeer KI. Influence of nanomaterials on the workability and compressive strength of cement-based concrete. Mater Today Proc 2022;65:2073–6. https://doi.org/10.1016/j.matpr.2022.06.429.
[74] Ghosal M, Chakraborty AK. Engineering the properties of nanomaterials for its use in cement concrete. Mater Today Proc 2021.
[75] Kanagaraj B, Nammalvar A, Andrushia AD, Gurupatham BGA, Roy K. Influence of Nano Composites on the Impact Resistance of Concrete at Elevated Temperatures. Fire 2023;6:1–18. https://doi.org/10.3390/fire6040135.
[76] Ahmed HU, Mohammed AA, Mohammed AS. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review. J Build Eng 2022;49:104062. https://doi.org/10.1016/j.jobe.2022.104062.
[77] Assaedi H, Alomayri T, Kaze CR, Jindal BB, Subaer S, Shaikh F, et al. Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3. Constr Build Mater 2020;252:119137. https://doi.org/10.1016/j.conbuildmat.2020.119137.
[78] Assaedi H, Shaikh FUA, Low IM. Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr Build Mater 2016;123:541–52. https://doi.org/10.1016/j.conbuildmat.2016.07.049.
[79] Assaedi H, Shaikh FUA, Low IM. Effect of nano-clay on mechanical and thermal properties of geopolymer. J Asian Ceram Soc 2016;4:19–28. https://doi.org/10.1016/j.jascer.2015.10.004.
[80] Adak D, Sarkar M, Mandal S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr Build Mater 2017;135:430–9. https://doi.org/10.1016/j.conbuildmat.2016.12.111.
[81] Assaedi H, Alomayri T, Shaikh F, Low IM. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials (Basel) 2019;12. https://doi.org/10.3390/ma12091459.
[82] Vargas P, Marín NA, Tobón JI. Performance and Microstructural Analysis of Lightweight Concrete Blended with Nanosilica under Sulfate Attack. Adv Civ Eng 2018;2018. https://doi.org/10.1155/2018/2715474.
[83] Mansour AM, Al Biajawi MI. The effect of the addition of metakaolin on the fresh and hardened properties of blended cement products: A review. Mater Today Proc 2022;66:2811–7. https://doi.org/10.1016/j.matpr.2022.06.521.
[84] He Z, Wang B, Shi J, Liu D, Liu J, Wang D, et al. Drying shrinkage and microstructural evolution of concrete with high-volume and low-grade metakaolin. J Build Eng 2023;76:107206. https://doi.org/10.1016/j.jobe.2023.107206.
[85] Liu X, Fang T, Zuo J. SS symmetry E ff ect of Nano-Materials on Autogenous Shrinkage. Symmetry / MDPI 2019. https://doi.org/10.3390/sym11091144.
[86] Hawreen A, Bogas JA. Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes. Constr Build Mater 2019;198:70–81. https://doi.org/10.1016/j.conbuildmat.2018.11.253.
[87] Pavan Kumar D, Amit S, Sri Rama Chand M. Influence of various nano-size materials on fresh and hardened state of fast setting high early strength concrete [FSHESC]: A state-of-the-art review. Constr Build Mater 2021;277:122299. https://doi.org/10.1016/j.conbuildmat.2021.122299.
[88] Liu Q, Liu Z, Qian B, Xiong Y. Effect of nano-modified permeable silicone emulsion on the durability of concrete curbstone. Constr Build Mater 2022;324:126620. https://doi.org/10.1016/j.conbuildmat.2022.126620.
[89] Strzałkowski J, Sikora P, Chung S-Y, Abd Elrahman M. Thermal performance of building envelopes with structural layers of the same density: Lightweight aggregate concrete versus foamed concrete. Build Environ 2021;196:107799. https://doi.org/10.1016/j.buildenv.2021.107799.
[90] Sikora P, Elrahman MA, Stephan D. The influence of nanomaterials on the thermal resistance of cement-based composites—A review. Nanomaterials 2018;8:1–33. https://doi.org/10.3390/nano8070465.
[91] Saleh AN, Attar AA, Ahmed OK, Mustafa SS. Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2. Results Eng 2021;12:100303. https://doi.org/10.1016/j.rineng.2021.100303.
[92] Bulut m, Alsaadi M, Erkliğ A. The Effects of Nanosilica and Nanoclay Particles Inclusions on Mode II Delamination, Thermal and Water Absorption of Intraply Woven Carbon/Aramid Hybrid Composites. Int Polym Process 2020;35:367–75. https://doi.org/10.3139/217.3940.
[93] Wang S, Ng YH, Tan KH, Dasari A. Thermal properties of carbon nanofibers enhanced lightweight cementitious composite under high temperature. Constr Build Mater 2021;307:124358. https://doi.org/10.1016/j.conbuildmat.2021.124358.