Prediction of Impact Response for Reinforced Concrete Beams by Numerical Simulation Method

Document Type : Regular Paper

Authors

1 Assistant Professor, Department of Mechanical Engineering, National University of Skills (NUS), Tehran, Iran

2 Department of Civil Engineering, National University of Skills (NUS), Tehran, Iran

Abstract

Brittle characteristics, low tensile strength, and rapid crack propagation upon exposure to impact loads are some of the issues associated with concrete. This study predicts reinforced concrete (RC) beam failure modes under impact loads using experimental tests and numerical simulations. This paper simulates the drop test of a hammer using the nonlinear finite element method (FEM) and the powerful FE analysis software LS-DYNA. The developed model, unlike other numerical research, boasts a high computational speed and can effectively simulate real impact test conditions, like a vehiclecollosion with a bridge barrier. Also, the material models introduced for concrete and steel can be used in low to high strain rates for impact with different loading rates (LR).The components of the model include concrete, rebar, stirrup, and hammer. The reinforcement is modeled by beam elements, while the other parts consist of solid elements with an average size of 10mm. CONCRETE DAMAGE and PEICEWISE LINEAR PLASTICITY are used for describing the material behavior of concrete and rebar-stirrup, respectively. The interaction between parts, due to the different behavior of their materials, is carefully considered in the analysis. The difference in maximum displacement at beam midpoint between the impact test and the numerical simulation is less than 8%, highlighting an acceptable agreement between the results. The plastic strain contour for the RC sample test S1616 shows flexural failure modes at a drop height of 0.15 meters. The effects of the loading rate (LR) and concrete compressive strength are discussed. For every 10 MPa improvement in concrete compressive strength, mid span displacement decreased by about 10%. Impact force increases by roughly 31% at high loading rates (LR = 10 m/s), and compressive strength ranges from 32 MPa to 52 MPa.

Graphical Abstract

Prediction of Impact Response for Reinforced Concrete Beams by Numerical Simulation Method

Highlights

  • Accurate Nonlinear Finite Element Numerical Model for Predicting Bending Failure Mode of RC Beam is Developed.
  • Good Agreement for The Deflection of RC Beam Under Drop Hammer Test by Less Than 8% Difference is Observed.
  • Mid-Span Displacement of RC Beam Reduced by About 10% For Every 10 MPa Increase in Concrete's Compressive Strength (32, 42, And 52 MPa).
  • The Impact Forces Are Not Significantly Affected by The Concrete's Compressive Strength at Low Loading Rates (LR=2 m/s).

Keywords

Main Subjects


[1]      Fang C, Rasmussen JD, Bielenberg RW, Lechtenberg KA, Faller RK, Linzell DG. Experimental and numerical investigation on deflection and behavior of portable construction barrier subjected to vehicle impacts. Eng Struct 2021;235:112071. doi:10.1016/j.engstruct.2021.112071.
[2]      Peyman S, Heydari Digesara P. Investigation of crack propagation behavior of impact-resistant functionally graded concrete. Amirkabir J Civ Eng 2020;51:1111–28.
[3]      Abadel A, Abbas H, Siddiqui N, Elsanadedy H, Almusallam T, Al-Salloum Y. Numerical investigation of projectile impact behavior of hybrid fiber-reinforced concrete slabs. Case Stud Constr Mater 2023;19:e02533. doi:10.1016/j.cscm.2023.e02533.
[4]      Day KW. Concrete mix design, quality control and specification. CRC press; 2006.
[5]      Dalvand A, Sivandipour A. Assessment of Statistical Variations in Experimental Impact Resistance and Energy Absorption of High Strength Concrete. Exp Res Civ Eng 2015;2:133–41.
[6]      Reddy ARP, Sreenivasappa NM, Prabhakara R, Reddy HNJ. Effect of Steel Ratio on Dynamic Response of HSC Two Way Slab Strengthened by Entrenched CFRP Strips Using Drop Test. Recent Trends Civ. Eng. Sel. Proc. ICRTICE 2019, Springer; 2020, p. 157–73.
[7]      Fujikake K, Senga T, Ueda N, Ohno T, Katagiri M. Study on Impact Response of Reactive Powder Concrete Beam and Its Analytical Model. J Adv Concr Technol 2006;4:99–108. doi:10.3151/jact.4.99.
[8]      Mollaei S, Babaei M, JalilKhani M. Assessment of damage and residual load capacity of the normal and retrofitted rc columns against the impact loading. J Rehabil Civ Eng 2021;9:29–51.
[9]      Bin Cai, Lu S, Fu F. Behavior of steel fiber-reinforced coal gangue concrete beams under impact load. Eng Struct 2024;314:118306. doi:10.1016/j.engstruct.2024.118306.
[10]     Zhang Y, Cheng X, Diao M, Li Y, Guan H, Sun H. FRP retrofit for RC frame substructures against progressive collapse: Scheme optimisation and resistance calculation. Eng Struct 2023;289:116289. doi:10.1016/j.engstruct.2023.116289.
[11]     Dhiman P, Kumar V. Numerical investigation of reinforced concrete beams under impact loading. Asian J Civ Eng 2024;25:537–54. doi:10.1007/s42107-023-00793-0.
[12]     Sun J-M, Chen H, Yi F, Ding Y-B, Zhou Y, He Q-F, et al. Experimental and numerical study on influence of impact mass and velocity on failure mode of RC columns under lateral impact. Eng Struct 2024;314:118416. doi:10.1016/j.engstruct.2024.118416.
[13]     Zhou Y, Cheng X, Li Y, Liu F. Simplified numerical model for the collapse analysis of RC frame under oblique impact. Mag Concr Res 2023;76:159–75.
[14]     Khomami Abadi M, Alijani A. A new approach to finite element modeling of crack in RC beams. Concr Res 2018;11:51–65.
[15]     Anil Ö, Durucan C, Erdem RT, Yorgancilar MA. Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading. Constr Build Mater 2016;125:94–104. doi:10.1016/j.conbuildmat.2016.08.028.
[16]     Ožbolt J, Sharma A. Numerical simulation of reinforced concrete beams with different shear reinforcements under dynamic impact loads. Int J Impact Eng 2011;38:940–50. doi:10.1016/j.ijimpeng.2011.08.003.
[17]     Rezazadeh Eidgahee D, Soleymani A, Jahangir H, Nikpay M, Arora HC, Kumar A. Estimating the load carrying capacity of reinforced concrete beam-column joints via soft computing techniques. Artif. Intell. Appl. Sustain. Constr., 2024. doi:10.1016/B978-0-443-13191-2.00014-6.
[18]     Fakharian P, Nouri Y, Ghanizadeh AR, Safi Jahanshahi F, Naderpour H, Kheyroddin A. Bond strength prediction of externally bonded reinforcement on groove method (EBROG) using MARS-POA. Compos Struct 2024;349–350:118532. doi:10.1016/j.compstruct.2024.118532.
[19]     Chen L, Fakharian P, Rezazadeh Eidgahee D, Haji M, Mohammad Alizadeh Arab A, Nouri Y. Axial compressive strength predictive models for recycled aggregate concrete filled circular steel tube columns using ANN, GEP, and MLR. J Build Eng 2023;77:107439. doi:10.1016/j.jobe.2023.107439.
[20]     Aminakbari N, Kabir MZ, Rahai A, Hosseinnia A. Experimental and Numerical Evaluation of GFRP-Reinforced Concrete Beams Under Consecutive Low-Velocity Impact Loading. Int J Civ Eng 2024;22:145–56. doi:10.1007/s40999-023-00883-9.
[21]     Nouri Y, Ghanbari MA, Fakharian P. An integrated optimization and ANOVA approach for reinforcing concrete beams with glass fiber polymer. Decis Anal J 2024;11:100479. doi:10.1016/j.dajour.2024.100479.
[22]     Jahangir H, Hasani H, Esfahani MR. Wavelet-based damage localization and severity estimation of experimental RC beams subjected to gradual static bending tests. Structures 2021;34:3055–69. doi:10.1016/j.istruc.2021.09.059.
[23]     Soleymani A, Jahangir H, Rashidi M, Mojtahedi FF, Bahrami M, Javanmardi A. Damage Identification in Reinforced Concrete Beams Using Wavelet Transform of Modal Excitation Responses. Buildings 2023;13:1955. doi:10.3390/buildings13081955.
[24]     Miyagawa T, Morikawa H, Otsuki N, Miyamoto A, Eguchi K, Hamada H, et al. STANDARD SPECIFICATION FOR CONCRETE STRUCTURES,-2001 “MAINTENANCE.” 대한토목학회 학술대회 2003:5629–40.
[25]     Fujikake K, Li B, Soeun S. Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation. J Struct Eng 2009;135:938–50. doi:10.1061/(ASCE)ST.1943-541X.0000039.
[26]     Hallquist JO. LS-DYNA keyword user’s manual. Livermore Softw Technol Corp 2007;970:299–800.
[27]     Malvar LJ, Crawford JE, Wesevich JW, Simons D. A plasticity concrete material model for DYNA3D. Int J Impact Eng 1997;19:847–73. doi:10.1016/S0734-743X(97)00023-7.
[28]     Kumar P, Srivastava G. Effect of fire on in-plane and out-of-plane behavior of reinforced concrete frames with and without masonry infills. Constr Build Mater 2018;167:82–95. doi:10.1016/j.conbuildmat.2018.01.116.
[29]     Nam J-W, Kim H-J, Kim S-B, Yi N-H, Kim J-HJ. Numerical evaluation of the retrofit effectiveness for GFRP retrofitted concrete slab subjected to blast pressure. Compos Struct 2010;92:1212–22. doi:10.1016/j.compstruct.2009.10.031.
[30]     Cuong NH, An H, Han T-V, An S, Shin J, Lee K. Structural test and FEM analysis of a thermal bridge connection employing the UHPC system for concrete cladding wall. Results Eng 2024;22:102191. doi:10.1016/j.rineng.2024.102191.
[31]     Reifarth C, Castedo R, Santos AP, Chiquito M, López LM, Pérez-Caldentey A, et al. Numerical and experimental study of externally reinforced RC slabs using FRPs subjected to close-in blast loads. Int J Impact Eng 2021;156:103939. doi:10.1016/j.ijimpeng.2021.103939.