Effect of Steel Fiber Ratios in Thin Concrete Plate Modeling

Document Type : Regular Paper

Authors

1 Ph.D. Candidate, Department of Civil Engineering, Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Turkey

2 Professor, Department of Civil Engineering, Faculty of Technology, Gazi University, Ankara, Turkey

3 Undergraduate Student, Department of Civil Engineering, Faculty of Technology, Gazi University, Ankara, Turkey

Abstract

Steel fiber reinforcement has emerged as a pivotal innovation in enhancing the mechanical properties of concrete, particularly in applications requiring improved tensile strength, energy absorption, and ductility, thereby making it a vital consideration in the retrofitting of reinforced concrete elements. Compression strength, splitting tensile strength, and flexural strength tests were conducted to determine the mechanical properties in term of compressive and tensile strength of concrete panels containing different proportions of steel fibers for use in the Retrofitting (thin concrete plate) of reinforced concrete elements. Steel fibers were incorporated into the concrete at volume fractions of 0%, 1%, and 2%. To compare and verify the tensile strengths obtained from the experiments, formulas provided in TS 500 and results from ANSYS 15 finite element program were utilized. In regard to the flexural strength test results, the incorporation of steel fibers in the cement mortars led to a significant increase in tensile strength, with enhancements of up to 112.5% and 137.5% for steel fiber volume fractions of 1% and 2%, respectively. Furthermore, increasing the steel fiber volume fraction to 1% and 2% notably improved the energy absorption capacity by 80 and 110 times, respectively, and the ductility ratio by 15 and 18 times, respectively.

Graphical Abstract

Effect of Steel Fiber Ratios in Thin Concrete Plate Modeling

Keywords

Main Subjects


[1]      Mercimek Ö, Ghoroubi R, Anil Ö, Çakmak C, Özdemir A, Kopraman Y. Strength, ductility, and energy dissipation capacity of RC column strengthened with CFRP strip under axial load. Mech Based Des Struct Mach 2023;51:961–79. doi:10.1080/15397734.2020.1860772.
[2]      Yooprasertchai E, Juntanalikit P, Jirawattanasomkul T, Srivaranun S, Pimanmas A. Cyclic performance of non‐ductile reinforced concrete columns retrofitted by partial steel plate jacketing: Experiment and numerical analysis. Struct Concr 2024. doi:10.1002/suco.202300326.
[3]      Buyukkaragoz A. Shear behavior of aerated concrete and hollow brick walls strengthened with steel fiber-reinforced concrete panels. Mech Adv Mater Struct 2020;27:1531–9. doi:10.1080/15376494.2018.1519617.
[4]      Bedirhanoglu I, Ilki A, Triantafillou TC. Seismic Behavior of Repaired and Externally FRP-Jacketed Short Columns Built with Extremely Low-Strength Concrete. J Compos Constr 2022;26. doi:10.1061/(ASCE)CC.1943-5614.0001179.
[5]      Choudhary S, Jain A, Bhavsar H, Chaudhary S, Choudhary R. Analysis of steel fiber reinforced concrete wall panels under compression, flexural and impact loading. Mater Today Proc 2021;38:2471–5. doi:10.1016/j.matpr.2020.07.509.
[6]      Osgouei YB, Tafreshi ST, Pourbaba M. Flexural Properties of UHPFRC Beams with an Initial Notch. J Rehabil Civ Eng 2023;11:141–77. doi:10.22075/JRCE.2022.25513.1576.
[7]      Han X, Li P, Liu J. Application of a Closed-Form Model in Analyzing the Fracture of Quasi-Brittle Materials. Materials (Basel) 2024;17:282. doi:10.3390/ma17020282.
[8]      Eller B, Movahedi Rad M, Fekete I, Szalai S, Harrach D, Baranyai G, et al. Examination of Concrete Canvas under Quasi-Realistic Loading by Computed Tomography. Infrastructures 2023;8:23. doi:10.3390/infrastructures8020023.
[9]      Specification for Steel Fibers for Fiber-Reinforced Concrete 1996. doi:10.1520/A0820-96.
[10]    Zhang P, Wang C, Gao Z, Wang F. A review on fracture properties of steel fiber reinforced concrete. J Build Eng 2023;67:105975. doi:10.1016/j.jobe.2023.105975.
[11]    Ge L, Zhang Y, Feng Z, Li H. Study on the mechanical and microscopic properties of steel fiber reinforced reactive powder concrete under different curing methods. J Build Eng 2023;76:107436. doi:10.1016/j.jobe.2023.107436.
[12]    Wang Z, Li H, Zhang X, Chang Y, Wang Y, Wu L, et al. The Effects of Steel Fiber Types and Volume Fraction on the Physical and Mechanical Properties of Concrete. Coatings 2023;13:978. doi:10.3390/coatings13060978.
[13]    Asim Y, Tomris E. TS EN 206-1, Concrete- Part 1: Specification, performance, production and conformity. Ankara: 2002.
[14]    Pourghashti HH, Madandoust R, Ranjbar MM. Studying Tensile Strength of the Recycled Coarse Aggregate Concrete Using Double-Punch Test. J Rehabil Civ Eng 2022;10:100–20. doi:10.22075/JRCE.2021.20395.1413.
[15]    TS EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements. Eur Stand n.d.;603.
[16]    Müller C. How standards support sustainability of cement and concrete in Europe. Cem Concr Res 2023;173:107288. doi:10.1016/j.cemconres.2023.107288.
[17]    TSE. TS 802 Beton karışımı hesap esasları. TS 802 Bet Karışımı Hesap Esasları 2016.
[18]    ASTM. ASTM C1116/C1116M-10a, Standard Specification for Fiber-Reinforced Concrete. ASTM 2023.
[19]    Turkish Standard. TS EN 1008. TS 2003.
[20]    Turkish Standard. TS EN 934-2. TS 2010.
[21]    Cavusoglu I, Yilmaz E, Yilmaz AO. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures. Constr Build Mater 2021;267:121021. doi:10.1016/j.conbuildmat.2020.121021.
[22]    Cemalgil S, Onat O, Aruntaş HY. An Estimation Proposal for Engineering Properties of Modified Concrete by using Standalone and Hybrid GRELM. Iran J Sci Technol Trans Civ Eng 2023;47:1357–77. doi:10.1007/s40996-022-01005-6.
[23]    Lanwer J-P, Empelmann M. Performance-Based Fibre Design for Ultra-High Performance Concrete (UHPC). Appl Sci 2022;12:8559. doi:10.3390/app12178559.
[24]    Ni W, Cui X, Yuan J, Sun W, Cui C, Wu Y, et al. The influence of fiber, aggregate and cementitious materials on the mechanical properties of ultra-high content steel fiber reinforced reactive powder concrete. Constr Build Mater 2024;431:136530. doi:10.1016/j.conbuildmat.2024.136530.
[25]    Yavuz Bayraktar O, Kaplan G, Shi J, Benli A, Bodur B, Turkoglu M. The effect of steel fiber aspect-ratio and content on the fresh, flexural, and mechanical performance of concrete made with recycled fine aggregate. Constr Build Mater 2023;368:130497. doi:10.1016/j.conbuildmat.2023.130497.
[26]    Biswas RK, Bin Ahmed F, Haque ME, Provasha AA, Hasan Z, Hayat F, et al. Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete. Appl Mech 2021;2:501–15. doi:10.3390/applmech2030028.
[27]    ASTM International. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1 - ASTM C39/C39M - Standard. Annu B ASTM Stand 2021;04.02:1–7.
[28]    Ersoy U., Canbey E. OG. Betonarme Cilt 1 Davranıs ve Hesap İlkeleri (Turkish Language). Turkey: 2020.
[29]    H BS. Numune Şekli ve Boyutunun Lif ve Lif İçermeyen Beton Karışımlarının Dayanımına Etkisi (Turkish). Uludag university, 2018.
[30]    ASTM. C 496/C 496M, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM 2017. doi:DOI: 10.1520/C0496-96.
[31]    ACI. ACI 318-19: Requisitos de reglamento para concreto estructural y comentario de requisitos de reglamento. Am Concr Inst 2019:1–688.
[32]    Yu W, Jin L, Du X. Experimental investigation on splitting-tension failures of basalt fiber-reinforced lightweight aggregate concrete: Effects of strain rate and structure size. J Build Eng 2023;68:105853. doi:10.1016/j.jobe.2023.105853.
[33]    Wong ILK. Effect compressive strength and split tensile strength of concrete using aggregate from Tana Toraja district with fly ash substitution. IOP Conf Ser Earth Environ Sci 2021;921:012066. doi:10.1088/1755-1315/921/1/012066.
[34]    Ren H, Li T, Ning J, Song S. Bending damage and fractal characteristics of steel fiber-reinforced concrete under three-point bending test. Constr Build Mater 2023;409:134053. doi:10.1016/j.conbuildmat.2023.134053.
[35]    Saatci S, Cetin FS, Aloui S, Naseri J. Effects of steel fiber type and ratio on the one-way bending behavior of hybrid fiber reinforced concrete thin panels. Constr Build Mater 2024;411:134190. doi:10.1016/j.conbuildmat.2023.134190.
[36]    Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading) 2008. doi:10.1520/C0293-08.
[37]    Test CC, Drilled T, Concrete C. Standard Test Method for Flexural Strength of Concrete ( Using Simple Beam with Third-Point Loading ) 1. Hand 2010;C78-02:1–4.
[38]    Li Y-F, Tsai P-J, Syu J-Y, Lok M-H, Chen H-S. Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar. Fibers 2023;11:109. doi:10.3390/fib11120109.
[39]    Al-Rifaie WN, Ahmed WK, Mahdi OM. Green building using nano materials for high performance cement mortar composite. 2018 5th Int. Conf. Renew. Energy Gener. Appl., IEEE; 2018, p. 203–6. doi:10.1109/ICREGA.2018.8337578.
[40]    Park.R. Structural Assemblages From Laboratory Testing. NZSEE – New Zeal Soc Earthq Eng 1989;22:155–66.
[41]    Wu X, Kang THK, Mpalla IB, Kim CS. Axial Load Testing of Hybrid Concrete Columns Consisting of UHPFRC Tube and Normal-Strength Concrete Core. Int J Concr Struct Mater 2018;12. doi:10.1186/s40069-018-0275-2.
[42]    TS500. Betonarme Yapıların Tasarım ve Yapım Kuralları. Turk Stand Enst 2000:1–75.
[43]    Afanador García N, Guerrero Gómez G, Nolasco Serna C. Reinforced concrete beams subjected to three-point bending using finite element method. J Phys Conf Ser 2021;1938:012008. doi:10.1088/1742-6596/1938/1/012008.
[44]    Pokorska I, Poński M, Kubissa W, Libura T, Brodecki A, Kowalewski Z. Computational Fracture Evolution Analysis of Steel-Fiber-Reinforced Concrete Using Concrete Continuous Damage and Fiber Progressive Models. Materials (Basel) 2023;16:5635. doi:10.3390/ma16165635.
[45]    Xiang C, Shao W, Fang H, Liu Y. Failure predictions for steel-UHPC-steel sandwich beams under three-point bending. Ocean Eng 2023;288:116042. doi:10.1016/j.oceaneng.2023.116042.
[46]    Han J, Zhao M, Chen J, Lan X. Effects of steel fiber length and coarse aggregate maximum size on mechanical properties of steel fiber reinforced concrete. Constr Build Mater 2019;209:577–91. doi:10.1016/j.conbuildmat.2019.03.086.