[1]     Qureshi J. Fibre-Reinforced Polymer (FRP) in Civil Engineering. Next Gener Fiber-Reinforced Compos - New Insights 2023. https://doi.org/10.5772/intechopen.107926.
                                                                                                                [2]     Correia JR, Bai Y, Keller T. A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications. Compos Struct 2015;127:267–87. https://doi.org/10.1016/j.compstruct.2015.03.006.
                                                                                                                [3]     Zaman A, Gutub SA, Wafa MA. A review on FRP composites applications and durability concerns in the construction sector. J Reinf Plast Compos 2013;32:1966–88. https://doi.org/10.1177/0731684413492868.
                                                                                                                [4]     Hastak M, Mirmiran A, Richard D. A framework for life-cycle cost assessment of composites in construction. J Reinf Plast Compos 2003;22:1409–29. https://doi.org/10.1177/073168403035586.
                                                                                                                [5]     Hu W, Li Y, Yuan H. Review of Experimental Studies on Application of FRP for Strengthening of Bridge Structures. Adv Mater Sci Eng 2020;2020. https://doi.org/10.1155/2020/8682163.
                                                                                                                [6]     Polyzois DJ, Raftoyiannis IG, Ochonski A. Experimental and analytical study of latticed structures made from FRP composite materials. Compos Struct 2013;97:165–75. https://doi.org/10.1016/j.compstruct.2012.10.032.
                                                                                                                [7]     Harle SM. Durability and long-term performance of fiber reinforced polymer (FRP) composites: A review. Structures 2024;60. https://doi.org/10.1016/j.istruc.2024.105881.
                                                                                                                [8]     Lee LS, Jain R. The role of FRP composites in a sustainable world. Clean Technol Environ Policy 2009;11:247–9. https://doi.org/10.1007/s10098-009-0253-0.
                                                                                                                [9]     Abbood IS, Odaa SA, Hasan KF, Jasim MA. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures - A review. Mater Today Proc 2021;43:1003–8. https://doi.org/10.1016/j.matpr.2020.07.636.
                                                                                                                [10]   Maiti S, Islam MR, Uddin MA, Afroj S, Eichhorn SJ, Karim N. Sustainable Fiber-Reinforced Composites: A Review. Adv Sustain Syst 2022;6. https://doi.org/10.1002/adsu.202200258.
                                                                                                                [11]    Waghmare S, Shelare S, Aglawe K, Khope P. A mini review on fibre reinforced polymer composites. Mater Today Proc 2022;54:682–9. https://doi.org/10.1016/j.matpr.2021.10.379.
                                                                                                                [12]   Sharma S, Sudhakara P, Nijjar S, Saini S, Singh G. Recent Progress of Composite Materials in various Novel Engineering Applications. Mater Today Proc 2018;5:28195–202. https://doi.org/10.1016/j.matpr.2018.10.063.
                                                                                                                [13]   mahboubizadeh S, Sadeq A, Arzaqi Z, Ashkani O, Samadoghli M. Advancements in fiber-reinforced polymer (FRP) composites: an extensive review. Discov Mater  2024;4. https://doi.org/10.1007/s43939-024-00091-9.
                                                                                                                [14]   Alshurafa S, Polyzois D. Design recommendations and comparative study of FRP and steel guyed towers. Eng Sci Technol an Int J 2018;21:807–14. https://doi.org/10.1016/j.jestch.2018.06.014.
                                                                                                                [15]   Alshurafa SA, Polyzois D. An experimental and numerical study into the development of FRP guyed towers. Compos Struct 2018;201:779–90. https://doi.org/10.1016/j.compstruct.2018.06.056.
                                                                                                                [16]   TIA Standard. ANSI-TIA-222-G-2005: Structural standard for antenna supporting structures and antennas. Washington DC, USA: Telecommunications Industry Association; 2006.
                                                                                                                [17]   CEN. Eurocode 3: Design of steel structures : Towers, masts and chimneys - Towers and masts, 2006.
                                                                                                                [18]   GB50135. GB 50135-2006: Code for design of high-rising structures, 2006.
                                                                                                                [19]   CSA. CSA S37-18: Antennas, towers, and antenna-supporting structures., 2018.
                                                                                                                [20]   IsoTruss. IsoTruss, Inc – A structural revolution 2023.
                                                                                                                [21]   Jensen, David W, Larry R. Francom. Iso-Truss Structure. EP 1 358 392 B1, 2012.
                                                                                                                [22]   Opdahl HB, Jensen DW. Dimensional analysis and optimization of isotruss structures with outer longitudinal members in uniaxial compression. Materials (Basel) 2021;14. https://doi.org/10.3390/ma14082079.
                                                                                                                [23]   Fan HL, Meng FH, Yang W. Mechanical behaviors and bending effects of carbon fiber reinforced lattice materials. Arch Appl Mech 2006;75:635–47. https://doi.org/10.1007/s00419-006-0032-x.
                                                                                                                [24]   Gaikwad AA, Kenjale AC, Bhosale AB, Dumbre T V, Arakerimath RR, Roy S. Design Analysis & Manufacturing Of Carbon Composite Isotruss For Bending Analysis. Int Conf Recent Adv Mech Eng 2015:133–6.
                                                                                                                [25]   Sui Q, Fan H, Lai C. Failure analysis of 1D lattice truss composite structure in uniaxial compression. Compos Sci Technol 2015;118:207–16. https://doi.org/10.1016/j.compscitech.2015.09.003.
                                                                                                                [26]   M G, S R. Buckling Characteristics Study of Isotruss Structure with Different Positions of Longitudinal Members. Int J Cybern Informatics 2016;5:217–25. https://doi.org/10.5121/ijci.2016.5121.
                                                                                                                [27]   Richardson S. In-Situ Testing of a Carbon/Epoxy IsoTruss Reinforced Concrete Foundation Pile. Brigham Young University, 2006.
                                                                                                                [28]   Rackliffe ME, Jensen DW, Lucas WK. Local and global buckling of ultra-lightweight IsoTruss® structures. Compos Sci Technol 2006;66:283–8. https://doi.org/10.1016/j.compscitech.2005.04.038.
                                                                                                                [29]   Sui Q, Fan H, Manufacturing I. Vibration Behaviors of the Isotruss ® Composite Structure. 21st Int. Conf. Compos. Mater., 2017, p. 1–4.
                                                                                                                [30]   Jensen DW, Hinds KB. Shear-dominated bending behavior of carbon/epoxy composite lattice isobeam structures. ICCM Int Conf Compos Mater 2015;2015-July:19–24.
                                                                                                                [31]   Asay BA. Bending Behavior of Carbon / Epoxy Composite IsoBeam Structures. Brigham Young University, 2015.
                                                                                                                [32]   Hinds KB. Shear-dominated bending behavior of carbon/epoxy composite lattice isobeam structures. vol. 2015-July. Provo, Utah: 2015.
                                                                                                                [33]   Ferrell MJ. Flexural Behavior of Carbon/Epoxy IsoTruss Reinforced-Concrete Beam-Columns. Brigham Young University, 2005.
                                                                                                                [34]   Gaufin T. Design of a Composite Bridge for Aspen Grove. Brigham Young University, 1999.
                                                                                                                [35]   Delta7 Bikes n.d.
                                                                                                                [36]   Lai C. Mechanical properties and fabrication of composite grid structures. Northwestern Polytechnical University, 2015.
                                                                                                                [37]   Opdahl Hanna Belle. Investigation of IsoTruss ® Structures in Compression Using Numerical , Dimensional , and Optimization Methods. Brigham Young University, 2020.
                                                                                                                [38]   Ayers JT. Hydrodynamic Drag and Flow Visualization of IsoTruss Lattice Structures. Brigham Young University, 2005.
                                                                                                                [39]   Hansen SM, Jensen DW. Influence of consolidation and interweaving on compression behavior of IsoTrussTM structures. Inst Phys Conf Ser 2003;180:83–92.
                                                                                                                [40]   Lai C, Sui Q, Fan H. Designing Hierarchical IsoTruss Column Based on Controlling Multi-Buckling Behaviors. Int J Struct Stab Dyn 2022;22:1–19. https://doi.org/10.1142/S0219455422500304.
                                                                                                                [41]   Rackliffe ME. Development of Ultra-lightweight IsoTrussTM Grid Structures. Brigham Young University, 2002.
                                                                                                                [42]   IsoTruss. Sustainability: Eco-friendly – IsoTruss, Inc 2023.
                                                                                                                [43]   Rasool AM, Qureshi MU, Ahmad M. A Comparative Study on the Calculation of Wind Load and Analysis of Communication Tower as per TIA-222-G and TIA-222-H Standards. KSCE J Civ Eng 2021;25:646–53. https://doi.org/10.1007/s12205-020-0662-5.
                                                                                                                [44]   Smith M. ABAQUS/Standard User’s Manual, Version 6.9 2009.