[1] Laguardia R, Franchin P, Tesfamariam S. Risk‐based optimization of concentrically braced tall timber buildings: Derivative free optimization algorithm. Earthq Eng Struct Dyn 2024;53:179–99. doi:10.1002/eqe.4015.
[2] Takeuchi T. Buckling-restrained brace: History, design and applications. Key Eng Mater 2018;763:50–60.
[3] Xie Q. State of the art of buckling-restrained braces in Asia. J Constr Steel Res 2005;61:727–48.
[4] Hoveidae N, Rafezy B. Overall buckling behavior of all-steel buckling restrained braces. J Constr Steel Res 2012;79:151–8. doi:10.1016/j.jcsr.2012.07.022.
[5] Afrazi M, Lin Q, Fakhimi A. Physical and numerical evaluation of mode II fracture of quasi-brittle materials. Int J Civ Eng 2022;20:993–1007.
[6] Riazi E, Yazdani M, Afrazi M. Numerical study of slip distribution at pre-existing crack in rock mass using extended finite element method (XFEM). Iran J Sci Technol Trans Civ Eng 2023;47:2349–63.
[7] Ghasemi Jouneghani H, Nouri Y, Mortazavi M, Haghollahi A, Memarzadeh P. Seismic Performance Factors of Elliptic-Braced Frames with Rotational Friction Dampers through IDA. Pract Period Struct Des Constr 2024;29:1–24. doi:10.1061/PPSCFX.SCENG-1540.
[8] Ghasemi Jouneghani H, Nouri Y, Memarzadeh P, Haghollahi A, Hemati E. Seismic performance and failure mechanisms evaluation of multi-story elliptic and mega-elliptic bracing frames: Experimental and numerical investigation. Structures 2024;70:107658. doi:10.1016/j.istruc.2024.107658.
[9] Habib A, Yildirim U, Eren O. Seismic behavior and damping efficiency of reinforced rubberized concrete jacketing. Arab J Sci Eng 2021;46:4825–39.
[10] Habib A, Yildirim U. Distribution of strong input energy in base-isolated structures with complex nonlinearity: a parametric assessment. Multidiscip Model Mater Struct 2023;19:324–40.
[11] Shrif M, Barakat S, Al-Sadoon Z, Mostafa O, Awad R. Optimized neural network-based model to predict the shear strength of trapezoidal-corrugated steel webs. Heliyon 2024;10.
[12] Shrif M, Al-Sadoon ZA, Barakat S, Habib A, Mostafa O. Optimizing Gene Expression Programming to Predict Shear Capacity in Corrugated Web Steel Beams. Civ Eng J 2024;10:1370–85.
[13] Yang C, Xie L, Liu Q, Li A, Liu Q, Wang X. Dual-objective control of braced steel frame using asynchronized parallel two-stage yielding BRB. Soil Dyn Earthq Eng 2024;179:108522. doi:10.1016/j.soildyn.2024.108522.
[14] Zhao J, Zhang J, Song J, Zhou Y, Bai J, Yu H. Sliding gusset connections for improved seismic performance of BRB-RC frame: Damage-control design and subassemblage tests. Eng Struct 2023;282:115828. doi:10.1016/j.engstruct.2023.115828.
[15] Lin Y, Zhou Z, Shen M, Liu J, Huang W. Experimental Study of a New Self-Centering BRB and Its Application in Seismic Resistance of Frame Structure. Buildings 2024;14:850. doi:10.3390/buildings14030850.
[16] Nouri Y, Jouneghani HG, Haghollahi A, Hemati E, Hemati SA, Mortazavi M. Experimental and numerical investigation of a steel yielding arc and ring damper. Structures 2024;68:107140. doi:10.1016/j.istruc.2024.107140.
[17] Xie W, Wang J, Bao Y, Sun L. Theoretical studies and verification on tall RC two-column piers with BRBs: Numerical simulations and shaking table tests. Eng Struct 2024;304:117683. doi:10.1016/j.engstruct.2024.117683.
[18] Kim YC, Shahriyer H, Hu JW. Study on numerical seismic performance evaluation of 3D building frame with smart self-centering BRBs system. Case Stud Constr Mater 2022;17:e01666. doi:10.1016/j.cscm.2022.e01666.
[19] Qiu C, Zhang A, Jiang T, Du X. Seismic performance analysis of multi-story steel frames equipped with FeSMA BRBs. Soil Dyn Earthq Eng 2022;161:107392. doi:10.1016/j.soildyn.2022.107392.
[20] Das G, Das PJ, Deb SK. Seismic retrofit of torsionally coupled RC soft-storey building using short yielding core BRBs. J Build Eng 2023;65:105742. doi:10.1016/j.jobe.2022.105742.
[21] Balling RJ, Balling LJ, Richards PW. Design of buckling-restrained braced frames using nonlinear time history analysis and optimization. J Struct Eng 2009;135:461–8.
[22] Merritt S. Subassemblage Testing of Corebrace Buckling-restrained Braces. Dep Struct Eng 2003.
[23] Black CJ, Makris N, Aiken ID. Component testing, seismic evaluation and characterization of buckling-restrained braces. J Struct Eng 2004;130:880–94.
[24] Al-Sadoon ZA, Saatcioglu M, Palermo D. New buckling-restrained brace for seismically deficient reinforced concrete frames. J Struct Eng 2020;146:4020082.
[25] Hashemi SV, Miri M, Rashki M, Etedali S. Multi-objective optimal design of SC-BRB for structures subjected to different near-fault earthquake pulses. Structures 2022;36:1021–31. doi:10.1016/j.istruc.2021.12.066.
[26] Xie Q, Zhou Z, Huang L. Influence of design load determination method for SC-BRBs with trilinear flag-shaped hysteresis behaviour on the seismic performance of braces and structures. Eng Struct 2023;289:116292. doi:10.1016/j.engstruct.2023.116292.
[27] Surendran N, Varma A. Buckling restrained braces (BRB)–a review. Int Res J Eng Technol 2017;4:2320–4.
[28] Zsarnoczay A. Experimental and numerical investigation of buckling restrained braced frames for Eurocode conform design procedure development 2013.
[29] Kiggins S, Uang C-M. Reducing residual drift of buckling-restrained braced frames as a dual system. Eng Struct 2006;28:1525–32.
[30] Takeuchi T, Wada A. Review of buckling-restrained brace design and application to tall buildings. Int J High-Rise Build 2018;7:187–95.
[31] Fujimoto M. A study on the unbonded brace encasted in bucking-restrained concrete and steel tube. J Str Eng AIJ 1988;34.
[32] Fujimoto M, Wada A, Saeki E, Watanabe A, Hitomi Y. A study on brace enclosed in buckling-restraining mortar and steel tube. Summ. Tech. Pap. AIJ Annu. Meet., 1988, p. 1339–42.
[33] Fujimoto M, Wada A, Saeki E, Watanabe A, Hitomi Y. A study on brace enclosed in buckling-restrained mortar and steel tubes (Part 2). Ann Res Meet Arch Inst Jpn Struct II 1988;10:1339–40.
[34] Sukenobu T, Katsuhiro K. Experimental study on aseismic walls of steel framed reinforced concrete structures. Trans Archit Inst Japan 1960;66:497–500.
[35] Yoshino T, Karino Y. Experimental study on shear wall with braces: Part 2. Summ. Tech. Pap. Annu. Meet., vol. 11, Architectural Institute of Japan, Structural Engineering Section; 1971, p. 403–4.
[36] Wakabayashi M, Nakamura T, Katagihara A, Yogoyama H, Morisono T. Experimental study on the elastoplastic behavior of braces enclosed by precast concrete panels under horizontal cyclic loading—Parts 1 & 2. Summ. Tech. Pap. Annu. Meet., vol. 6, Architectural Institute of Japan; 1973, p. 121–8.
[37] Kimura K, Yoshioka K, Takeda T, Fukuya Z, Takemoto K. Tests on braces encased by mortar in-filled steel tubes. Summ. Tech. Pap. Annu. Meet. Archit. Inst. Japan, vol. 1041, 1976, p. 1–42.
[38] IWATA M, HUANG YH, KAWAI H, WADA A. STUDY ON THE-DAMAGE TOLERANT STRUCTURES. AIJ J Technol Des 1995;1:82–7. doi:10.3130/aijt.1.82.
[39] AKIRA W. Seismic design trend of fall buildings after the Kobe earthquake. Post-SMiRT Conf. Smninar Seism. Isol., 1997.
[40] Clark P, Aiken I, Kasai K, Ko E, Kimura I. Design procedures for buildings incorporating hysteretic damping devices. Proceedings, 68th Annu. Conv. Struct. Eng. Assoc. California, St. Barbar., 1999.
[41] Malley JO. AISC Seismic Design Manual: Moment Frames. New Horizons Better Pract., 2007, p. 1–3.
[42] Tsai K-C, Lai J-W, Hwang Y-C, Lin S-L, Weng C-H. Research and application of double-core buckling restrained braces in Taiwan. Proceeding 13th World Conf. Earthq. Eng. Pap., 2004.
[43] Takeuchi T, Wada A. Buckling-restrained braces and applications. Japan Society of Seismic Isolation Tokyo; 2017.
[44] Zhou Y, Shao H, Cao Y, Lui EM. Application of buckling-restrained braces to earthquake-resistant design of buildings: A review. Eng Struct 2021;246:112991.
[45] International A. ASTM A36/A36M-19 Standard Specification for Carbon Structural Steel 2019.
[46] Association JS. Rolled steel for general structure. JIS G 3101 1987.
[47] 700-2006 G. Carbon structural steels 2006.
[48] Ohashi M, Mochizuki H, Yamaguchi T, Hagiwara Y, Kuwamura H, Okamura Y. Development of new steel plates for building structural use. Nippon Steel Tech Report Overseas 1990:8–20.
[49] Yamaguchi T, Takeuchi T, Nagao T, Suzuki T, Nakata Y, Ikebe T, et al. Seismic control devices using low-yield-point steel. Nippon Steel Tech Report Overseas 1998:65–72.
[50] Wang J, Shi Y, Yan H. Experimental study on the seismic behavior of all-steel buckling-restrained brace with low yield point. China Civ Eng J 2013;46:9–16.
[51] Shi Q-X, Wang F, Wang P, Chen K. Experimental and numerical study of the seismic performance of an all-steel assembled Q195 low-yield buckling-restrained brace. Eng Struct 2018;176:481–99.
[52] Usami T, Wang C, Funayama J. Developing high‐performance aluminum alloy buckling‐restrained braces based on series of low‐cycle fatigue tests. Earthq Eng Struct Dyn 2012;41:643–61.
[53] Dusicka P, Tinker J. Global restraint in ultra-lightweight buckling-restrained braces. J Compos Constr 2013;17:139–50.
[54] Wang C-L, Usami T, Funayama J, Imase F. Low-cycle fatigue testing of extruded aluminium alloy buckling-restrained braces. Eng Struct 2013;46:294–301.
[55] Avci-Karatas C, Celik OC, Yalcin C. Experimental investigation of aluminum alloy and steel core buckling restrained braces (BRBs). Int J Steel Struct 2018;18:650–73.
[56] Avci-Karatas C, Celik OC, Ozmen Eruslu S. Modeling of Buckling Restrained Braces (BRBs) using Full-Scale Experimental Data. KSCE J Civ Eng 2019;23:4431–44. doi:10.1007/s12205-019-2430-y.
[57] AISC 360-22. Specification for Structural Steel Buildings Supersedes the Specification for Structural Steel Buildings 2022.
[58] CSI. SAP2000 Integrated Software for Structural Analysis and Design,” Computers and Structures Inc., Berkeley, California. - References - Scientific Research Publishing. Computers and Structures Inc 2019. https://www.scirp.org/reference/ReferencesPapers?R 2024.
[59] NBCC. National Building Code of Canada 2020.
[60] Guidelines for nonlinear structural analysis and design of buildings. part IIb - reinforced concrete moment frames. Gaithersburg, MD: 2017. doi:10.6028/NIST.GCR.17-917-46v3.