[1] Marshdi QSR, Hussien SA, Mareai BM, Al-Khafaji ZS, Shubbar AA. Applying of No-fines concretes as a porous concrete in different construction application. Period Eng Nat Sci 2021;9:999–1012. https://doi.org/10.21533/pen.v9i4.2476.
[2] Majdi HS, Shubbar AA, Nasr MS, Al-Khafaji ZS, Jafer H, Abdulredha M, et al. Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations. Data Br 2020;31:105961.
[3] Kadhim S, Shubbar A, Al-Khafaji Z, Nasr M, Al-Mamoori S, Falah MW. Development of ternary blend cement-free binder material for construction. Eur J Environ Civ Eng 2024:1–14. https://doi.org/10.1080/19648189.2024.2326977.
[4] Shubbar AA, Jafer H, Abdulredha M, Al-Khafaji ZS, Nasr MS, Al Masoodi Z, et al. Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days. J Build Eng 2020;30:101327. https://doi.org/10.1016/j.jobe.2020.101327.
[5] Falah MW, Hafedh AA, Hussein SA, Al-Khafaji ZS, Shubbar AA, Nasr MS. The Combined Effect of CKD and Silica Fume on the Mechanical and Durability Performance of Cement Mortar. Key Eng. Mater., vol. 895, Trans Tech Publ; 2021, p. 59–67.
[6] Hamad MA, Nasr M, Shubbar A, Al-Khafaji Z, Al Masoodi Z, Al-Hashimi O, et al. Production of Ultra-High-Performance Concrete with Low Energy Consumption and Carbon Footprint Using Supplementary Cementitious Materials Instead of Silica Fume: A Review. Energies 2021;14:8291. https://doi.org/10.3390/en14248291.
[7] Humad AM, Dakhil AJ, Al-Mashhadi SA, Al-Khafaji Z, Mohammed ZA, Jabr SF. Improvements of mechanical and physical features of cement mortar by nano AL2O3 and CaCO3 as additives. Res Eng Struct Mater 2024;10. https://doi.org/10.17515/resm2023.43me0806rs.
[8] Al-Khafaji ZS, Al Masoodi Z, Jafer H, Dulaimi A, Atherton W. The Effect Of Using Fluid Catalytic Cracking Catalyst Residue (FC3R)" As A Cement Replacement In Soft Soil Stabilisation. Int J Civ Eng Technol Vol 2018;9:522–33.
[9] Makul N. Advanced smart concrete-A review of current progress, benefits and challenges. J Clean Prod 2020;274:122899.
[10] Kibert CJ. Sustainable construction: green building design and delivery. John Wiley & Sons; 2016.
[11] Imbabi MS, Carrigan C, McKenna S. Trends and developments in green cement and concrete technology. Int J Sustain Built Environ 2012;1:194–216.
[12] Harrison T, Jones MR, Lawrence D. The production of low energy cements. Lea’s Chem Cem Concr 2019:341–61.
[13] Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 2004;34:1489–98. https://doi.org/10.1016/j.cemconres.2004.01.021.
[14] Nuaklong P, Jongvivatsakul P, Pothisiri T, Sata V, Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod 2020;252:119797.
[15] Lahoti M, Tan KH, Yang E-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 2019;221:514–26.
[16] Zeini HA, Al-jeznawi D, Imran H, Filipe L, Bernardo A, Al-khafaji Z, et al. Random Forest Algorithm for the Strength Prediction of Geopolymer Stabilized Clayey Soil 2023:1–15. https://doi.org/10.3390/su15021408.
[17] AL-JABERI LA, Ali A, Al-Jadiri RS, Al-Khafaji Z. Workability and Compressive Strength Properties of (Fly Ash-Metakaolin) based Flowable Geopolymer Mortar. Electron J Struct Eng 2023;23:46–51. https://doi.org/10.56748/ejse.23436.
[18] Al-Husseinawi FN, Atherton W, Al-Khafaji Z, Sadique M, Yaseen ZM. The Impact of Molar Proportion of Sodium Hydroxide and Water Amount on the Compressive Strength of Slag/Metakaolin (Waste Materials) Geopolymer Mortar. Adv Civ Eng 2022;2022. https://doi.org/10.1155/2022/5910701.
[19] Oyebisi S, Akinmusuru J, Ede A, Ofuyatan O, Mark G, Oluwafemi J. 14 molar concentrations of alkali-activated geopolymer concrete. IOP Conf. Ser. Mater. Sci. Eng., vol. 413, IOP Publishing; 2018, p. 12065.
[20] Amran M, Huang S-S, Debbarma S, Rashid RSM. Fire resistance of geopolymer concrete: A critical review. Constr Build Mater 2022;324:126722.
[21] Zhang H, Sarker PK, Wang Q, He B, Kuri JC, Jiang Z. Comparison of compressive, flexural, and temperature-induced ductility behaviours of steel-PVA hybrid fibre reinforced OPC and geopolymer concretes after high temperatures exposure. Constr Build Mater 2023;399:132560.
[22] Abd Razak SN, Shafiq N, Guillaumat L, Wahab MMA, Farhan SA, Husna N, et al. Fire performance of fly ash-based geopolymer concrete: Effect of burning temperature. IOP Conf. Ser. Earth Environ. Sci., vol. 945, IOP Publishing; 2021, p. 12062.
[23] Ekinci E, Türkmen İ, Kantarci F, Karakoç MB. The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Constr Build Mater 2019;201:257–67.
[24] Yazdi MA, Liebscher M, Hempel S, Yang J, Mechtcherine V. Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Constr Build Mater 2018;191:330–41.
[25] He R, Dai N, Wang Z. Thermal and mechanical properties of geopolymers exposed to high temperature: a literature review. Adv Civ Eng 2020;2020:7532703.
[26] Korniejenko K, Frączek E, Pytlak E, Adamski M. Mechanical properties of geopolymer composites reinforced with natural fibers. Procedia Eng 2016;151:388–93.
[27] Cheng Z, He L, Wang L, Liu Y, Yang S, He Z, et al. Effect of textile sludge on strength, shrinkage, and microstructure of polypropylene fiber concrete. Buildings 2023;13:379.
[28] Zhang HY, Kodur V, Wu B, Cao L, Wang F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr Build Mater 2016;109:17–24.
[29] Sarker PK, Mcbeath S. Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr Build Mater 2015;90:91–8.
[30] IQS-5. Iraqi Standard Specification for the Portland Cement. Cent Organ Stand Qual Control Baghdad, Iraq 2005.
[31] Sujatha T, Kannapiran K, Nagan S. Strength assessment of heat cured geopolymer concrete slender column. ASIAN J Civ Eng (BUILDING HOUSING) 2012;13:635–46.
[32] ME CR, Rao AB. Behavior of self compacting concrete under axial compression with and without confinement. Int J Ethics Eng Manag Educ 2014;1.
[33] Vijai K, Kumutha R, Vishnuram BG. Effect of types of curing on strength of geopolymer concrete. Int J Phys Sci 2010;5:1419–23.
[34] Shaikh FUA. Pullout behavior of hook end steel fibers in geopolymers. J Mater Civ Eng 2019;31:4019068.
[35] Athiyamaan V, Ganesh GM. Experimental, statistical and simulation analysis on impact of micro steel–Fibres in reinforced SCC containing admixtures. Constr Build Mater 2020;246:118450.
[36] Standard A. C78. 2002. Standard test method for flexural strength of concrete (using simple beam with third point loading). Annu B ASTM Stand 2002;4.
[37] Mo KH, Yeoh KH, Bashar II, Alengaram UJ, Jumaat MZ. Shear behaviour and mechanical properties of steel fiber-reinforced cement-based and geopolymer oil palm shell lightweight aggregate concrete. Constr Build Mater 2017;148:369–75.
[38] Khan MZN, Hao Y, Hao H, Shaikh FUA. Mechanical properties of ambient cured high strength hybrid steel and synthetic fibers reinforced geopolymer composites. Cem Concr Compos 2018;85:133–52.
[39] Nath P, Sarker PK. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater 2017;130:22–31.
[40] Tran TT, Pham TM, Hao H. Experimental and analytical investigation on flexural behaviour of ambient cured geopolymer concrete beams reinforced with steel fibers. Eng Struct 2019;200:109707.
[41] Abdullah M, Tahir MFM, Tajudin M, Ekaputri JJ, Bayuaji R, Khatim NAM. Study on the geopolymer concrete properties reinforced with hooked steel fiber. IOP Conf. Ser. Mater. Sci. Eng., vol. 267, IOP Publishing; 2017, p. 12014.
[42] Ponnambalam N, Thangavel S, Murali G, Vatin NI. Impact strength of preplaced aggregate concrete comprising glass fibre mesh and steel fibres: experiments and modeling. Materials (Basel) 2022;15:5259.
[43] Xiang Z, Zhou J, Niu J. Compressive behavior of CFRP-confined steel fiber-reinforced self-compacting lightweight aggregate concrete in square columns. J Build Eng 2022;59:105118.
[44] Li H, Li X, Fu J, Zhu N, Chen D, Wang Y, et al. Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load. Constr Build Mater 2023;399:132599.
[45] Ahmad J, Burduhos-Nergis DD, Arbili MM, Alogla SM, Majdi A, Deifalla AF. A review on failure modes and cracking behaviors of polypropylene fibers reinforced concrete. Buildings 2022;12:1951.
[46] Ahmad J, González-Lezcano RA, Majdi A, Ben Kahla N, Deifalla AF, El-Shorbagy MA. Glass fibers reinforced concrete: Overview on mechanical, durability and microstructure analysis. Materials (Basel) 2022;15:5111.
[47] Zhou A, Qiu Q, Chow CL, Lau D. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature. Compos Part A Appl Sci Manuf 2020;131:105802.
[48] Hamidi F, Carré H, Hamami AEA, Aït-Mokhtar A, La Borderie C, Pimienta P. Critical review of the use of fiber-reinforced concrete against spalling. Fire Saf J 2023:103988.
[49] Ryu GS, Lee YB, Koh KT, Chung YS. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 2013;47:409–18.
[50] Kumar S, Kumar R, Mehrotra SP. Influence of granulated blast furnace slag on fly ash-based geopolymer's reaction, structure and properties. J Mater Sci 2010;45:607–15.
[51] Nath SK, Kumar S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr Build Mater 2013;38:924–30.
[52] Nath P, Sarker PK. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 2014;66:163–71.
[53] Fernández-Jiménez A, García-Lodeiro I, Palomo A. Durability of alkali-activated fly ash cementitious materials. J Mater Sci 2007;42:3055–65.
[54] Alehyen S, Achouri MEL, Taibi M. Characterization, microstructure and properties of fly ash-based geopolymer. J Mater Environ Sci 2017;8:1783–96.