[1] A. C. I. Committee, “ACI 318-19,” ACI318-19 Committee, “318M-19 Build. Code Requir. Concr. Comment., p. 628, 2019.
[2] Y. J. Lafta, “Specification of Deep Beams Affect the Shear Strength Capacity,” vol. 8, no. 2, pp. 56–68, 2016.
[3] A. H. Mattock, “Design proposals for reinforced concrete corbels,” J Prestress. Concr Inst, vol. 21, no. 3, pp. 18–42, 1976, [Online]. Available: 10.15554/pcij.05011976.18.42
[4] A. S. Alqarni, A. S. Albidah, and A. A. Abadel, “Shear performance of reinforced concrete deep beams using different coarse aggregates under the effect of elevated temperatures,” Case Stud. Constr. Mater., vol. 16, p. e01087, Jun. 2022, doi: 10.1016/J.CSCM.2022.E01087.
[5] T. D. Dang, D. T. Tran, L. Nguyen-Minh, and A. Y. Nassif, “Shear resistant capacity of steel fibres reinforced concrete deep beams: An experimental investigation and a new prediction model,” Structures, vol. 33, no. May, pp. 2284–2300, 2021, doi: 10.1016/j.istruc.2021.05.091.
[6] P. Smarzewski, “Analysis of failure mechanics in hybrid fibre-reinforced high-performance concrete deep beams with and without openings,” Materials (Basel)., vol. 12, no. 1, 2018, doi: 10.3390/ma12010101.
[7] P. S. S. Patil, A. N. Shaikh, and P. B. R. Niranjan, “Experimental and Analytical Study on Reinforced Concrete Deep Beam,” vol. 3, no. 1, pp. 45–52, 2013.
[8] J. H. Zhang, S. S. Li, W. Xie, and Y. D. Guo, “Experimental study on shear capacity of high strength reinforcement concrete deep beams with small shear span-depth ratio,” Materials (Basel)., vol. 13, no. 5, 2020, doi: 10.3390/ma13051218.
[9] C. Ma, C. Xie, A. Tuohuti, and Y. Duan, “Analysis of influencing factors on shear behavior of the reinforced concrete deep beams,” vol. 45, no. September 2021, 2022.
[10] A. Dalvand, E. Sharififard, and F. Omidinasab, “Experimental investigation of mechanical and dynamic impact properties of high strength cementitious composite containing micro steel and PP fibers,” J. Rehabil. Civ. Eng., vol. 8, no. 4, pp. 73–89, 2020, doi: 10.22075/JRCE.2020.17480.1332.
[11] H. Razzaghi, R. Madandoust, and H. Aghabarati, “Strength Assessment of Steel Fibre Reinforced Recycled Aggregate Concrete by Means of Correlation between Ultrasonic and Point Load Tests,” J. Rehabil. Civ. Eng., vol. 10, no. 2, pp. 79–92, 2022, doi: 10.22075/JRCE.2021.21898.1456.
[12] B. Isojeh, M. El-Zeghayar, and F. J. Vecchio, “Fatigue resistance of steel fiber-reinforced concrete deep beams,” ACI Struct. J., vol. 114, no. 5, pp. 1215–1226, 2017, doi: 10.14359/51700792.
[13] A. P. and R. P. Sergio Garcia, “Shear Strength of Sand-Lightweight Concrete Deep Beams with Steel Fibers,” ACI Struct. J., vol. 118, no. 2, Mar. 2021, doi: 10.14359/51729347.
[14] M. S. Manharawy, A. A. Mahmoud, O. O. El-Mahdy, and M. H. El-Diasity, “Experimental and numerical investigation of lightweight foamed reinforced concrete deep beams with steel fibers,” Eng. Struct., vol. 260, p. 114202, Jun. 2022, doi: 10.1016/J.ENGSTRUCT.2022.114202.
[15] M. Sagar Varma Sagi, C. Lakavath, and S. Suriya Prakash, “Effect of steel fibers on the shear behavior of Self-Compacting reinforced concrete deep Beams: An experimental investigation and analytical model,” Eng. Struct., vol. 269, p. 114802, Oct. 2022, doi: 10.1016/J.ENGSTRUCT.2022.114802.
[16] N. Concha, J. R. Aratan, E. M. Derigay, J. M. Martin, and R. E. Taneo, “A hybrid neuro-swarm model for shear strength of steel fiber reinforced concrete deep beams,” J. Build. Eng., vol. 76, p. 107340, Oct. 2023, doi: 10.1016/J.JOBE.2023.107340.
[17] L. N. Hussain, M. J. Hamood, and E. A. Al-shaarbaf, “The behavior of UHPC deep beam using the hybrid combination of steel and basalt fibers,” vol. 7, no. 3, pp. 226–243, 2024.
[18] S. Khaksefidi and M. Ghalehnovi, “Effect of reinforcement type on the tension stiffening model of ultra-high performance concrete (UHPC),” J. Rehabil. Civ. Eng., vol. 8, no. 3, pp. 72–86, 2020, doi: 10.22075/JRCE.2020.19420.1368.
[19] N. Ahmadi, M. Yazdandoust, and M. Yazdani, “Simultaneous Effect of Aggregate and Cement Matrix on the Performance of High Strength Concrete,” J. Rehabil. Civ. Eng., vol. 9, no. 3, pp. 26–39, 2021, doi: 10.22075/jrce.2021.20803.1431.
[20] A. S. A. H. M. Fahmi, I. A.S AlShaarbaf, “Behavior of Reactive Powder Reinforced Concrete Deep Beams,” M.Sc. Thesis, Civ. Eng. Univ. Kufa, no. 20, pp. 1–22, 2018.
[21] M. J. Hasan and M. F. K. Al-Shamaa, “Effect bubbles on the behavior of reinforced reactive powder concrete deep beams,” Int. J. Civ. Eng. Technol., vol. 9, no. 12, pp. 592–602, 2018.
[22] A. P. . D. R. F. Makki, A. P. D. A. T. Jassem, and H. A. A. Jassem, “Non-Linear Analysis of Reactive Powder Concrete (Rpc) Deep Beams With Openings Strengthened By Cfrp,” Al-Qadisiyah J. Eng. Sci., vol. 11, no. 2, pp. 176–196, 2019, doi: 10.30772/qjes.v11i2.551.
[23] S. Muhaison, W. Abd, and M. Alwan, “Behaviour of Reactive Powder Rectaingular Deep Beam With Shear Zone Opening Subjected To Repeated Load,” J. Eng. Sustain. Dev., vol. 2018, no. 01, pp. 77–94, 2018, doi: 10.31272/jeasd.2018.1.7.
[24] H. Falah Hassan, “Behavior of Hybrid Deep Beams Containing Ultra High Performance and Conventional Concretes,” Eng. Technol. J., vol. 33, no. 1A, pp. 30–50, 2015, doi: 10.30684/etj.33.1a.3.
[25] S. A. Hassan and M. K. Ali, “Behavior of Hybrid Reinforced Concrete Deep Beams With Web Openings Under Repeated Loading,” J. Eng. Sustain. Dev., vol. 23, no. 4, pp. 52–75, 2019, doi: 10.31272/jeasd.23.4.4.
[26] K. Ma, T. Qi, H. Liu, and H. Wang, “Shear Behavior of Hybrid Fiber Reinforced Concrete Deep Beams,” Materials (Basel)., vol. 11, no. 10, p. 2023, Oct. 2018, doi: 10.3390/ma11102023.
[27] J. M. Mhalhal, T. S. Al-Gasham, and S. R. Abid, “Tests on reinforced concrete deep beams with different web reinforcement types,” IOP Conf. Ser. Mater. Sci. Eng., vol. 988, no. 1, 2020, doi: 10.1088/1757-899X/988/1/012032.
[28] M. J. Sada and S. F. Resan, “Shear Performance of Hybrid Concrete Deep Beams of Trapezoidal Section,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1067, no. 1, p. 012015, 2021, doi: 10.1088/1757-899x/1067/1/012015.
[29] Q. M. Shakir and H. K. Hanoon, “BEHAVIOR OF HIGH-PERFORMANCE REINFORCED ARCHED- HYBRID SELF-COMPACTING CONCRETE DEEP BEAMS,” J. Eng. Sci. Technol., vol. 18, no. 1, pp. 792–813, 2023.
[30] Q. Mohammed Shakir and H. K. Hannon, “a Novel Hybrid Model of Reinforced Concrete Deep Beams With Curved Hybridization,” J. Teknol., vol. 85, no. 2, pp. 31–39, 2023, doi: 10.11113/jurnalteknologi.v85.18703.
[31] Q. M. Shakir and H. K. Hanoon, “New models for reinforced concrete precast hybrid deep beams under static loads with curved hybridization,” Structures, vol. 54, pp. 1007–1025, Aug. 2023, doi: 10.1016/j.istruc.2023.05.084.
[32] Q. M. Shakir and A. F. Alghazali, “Effect of the arching action on the behavior of the RC precast concrete deep beams: comparison between several hybrid models,” J. Build. Pathol. Rehabil., vol. 9, no. 1, 2024, doi: 10.1007/s41024-023-00377-0.
[33] Q. M. Shakir and A. F. Alghazali, “Hybrid Curved Precast Deep Beams Composed Partially from Concrete Made with Recycled Concrete Aggregate,” E3S Web Conf., vol. 427, pp. 1–8, 2023, doi: 10.1051/e3sconf/202342702025.
[34] Q. M. Shakir and A. F. Alghazali, “New Model of Eco-Friendly Hybrid Deep Beams With Wastes of Crushed Concrete,” J. Teknol., vol. 85, no. 6, pp. 145–154, 2023, doi: 10.11113/jurnalteknologi.v85.20431.
[35] Q. M. Shakir and B. B. Abd, “Retrofitting of self compacting rc half joints with internal deficiencies by cfrp fabrics,” J. Teknol., vol. 82, no. 6, pp. 49–62, 2020, doi: 10.11113/jurnalteknologi.v82.14416.
[36] L. Taerwe, Non-Metallic (FRP) Reinforcement for Concrete Structures. CRC Press, 2004. doi: 10.1201/9781482271621.
[37] M. Rakhshanimehr, M. R. Esfahani, M. R. Kianoush, B. A. Mohammadzadeh, and S. R. Mousavi, “Flexural ductility of reinforced concrete beams with lap-spliced bars,” Can. J. Civ. Eng., vol. 41, no. 7, pp. 594–604, Jul. 2014, doi: 10.1139/cjce-2013-0074.