[1] Mahpour A, Alipour S, Khodadadi M, Khodaii A, Absi J. Leaching and mechanical performance of rubberized warm mix asphalt modified through the chemical treatment of hazardous waste materials. Constr Build Mater 2023;366:130184. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.130184.
[2] Khodadadi M, Khodaii A, Absi J, Tehrani FF, Hajikarimi P. Numerical and analytical length scale investigation on viscoelastic behavior of bituminous composites: Focusing on mortar scale. Constr Build Mater 2022;350:128775. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.128775.
[3] Chen Y, Chen Z, Xiang Q, Qin W, Yi J. Research on the influence of RAP and aged asphalt on the performance of plant-mixed hot recycled asphalt mixture and blended asphalt. Case Stud Constr Mater 2021;15:e00722. https://doi.org/https://doi.org/10.1016/j.cscm.2021.e00722.
[4] Zaumanis M, Poulikakos L, Arraigada M, Kunz B, Schellenberg U, Gassmann C. Asphalt recycling in polymer modified pavement: A test section and recommendations. Constr Build Mater 2023;409:134005. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.134005.
[5] Pouranian MR, Shishehbor M. Sustainability assessment of green asphalt mixtures: a review. Environments 2019;6:73. https://doi.org/https://doi.org/10.3390/environments6060073.
[6] Mahpour A, Khodadadi M, Shahraki M, Moghadas Nejad F. Evaluation of Moisture Durability of Modified Asphalt Mixture with Nano-Titanium Dioxide Using Surface Free Energy Method. Amirkabir J Civ Eng 2022;54:2831–50. https://doi.org/https://doi.org/ 10.22060/ceej.2021.19458.7180.
[7] Khodadadi M, Azarhoosh A, Khodaii A. Influence of polymeric coating the aggregate surface on moisture damage of hot mix asphalt. Period Polytech Civ Eng 2021;65:376–84. https://doi.org/https://doi.org/10.3311/PPci.14340.
[8] Fakhri M, Shahebrahimi E, Khodadadi M. Evaluation of the Effect of Zycotherm on Moisture Susceptibility of Warm Mix Asphalt Containing Crumb Rubber. Amirkabir J Civ Eng 2020;52:641–54. https://doi.org/https://doi.org/ 10.22060/ceej.2019.14814.5749.
[9] Anthonissen J, Braet J, others. Review and environmental impact assessment of green technologies for base courses in bituminous pavements. Environ Impact Assess Rev 2016;60:139–47. https://doi.org/https://doi.org/10.1016/j.eiar.2016.04.005.
[10] Lei B, Kong L, Guo Y, Sun B, Li X, Wu K, et al. Optimizing decarbonation and sustainability of concrete pavement: a case study. Case Stud Constr Mater 2024;21:e03574. https://doi.org/https://doi.org/10.1016/j.cscm.2024.e03574.
[11] Colbert B, You Z. The properties of asphalt binder blended with variable quantities of recycled asphalt using short term and long term aging simulations. Constr Build Mater 2012;26:552–7. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2011.06.057.
[12] Qian Y, Guo F, Leng Z, Zhang Y, Yu H. Simulation of the field aging of asphalt binders in different reclaimed asphalt pavement (RAP) materials in Hong Kong through laboratory tests. Constr Build Mater 2020;265:120651. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120651.
[13] Ongel A, Hugener M. Aging of bituminous mixes for rap simulation. Constr Build Mater 2014;68:49–54. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.06.030.
[14] Yu J, Guo Y, Peng L, Guo F, Yu H. Rejuvenating effect of soft bitumen, liquid surfactant, and bio-rejuvenator on artificial aged asphalt. Constr Build Mater 2020;254:119336. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119336.
[15] Ali AW, Mehta YA, Nolan A, Purdy C, Bennert T. Investigation of the impacts of aging and RAP percentages on effectiveness of asphalt binder rejuvenators. Constr Build Mater 2016;110:211–7. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.02.013.
[16] Zhang J, Sun C, Li P, Jiang H, Liang M, Yao Z, et al. Effect of different viscous rejuvenators on chemical and mechanical behavior of aged and recovered bitumen from RAP. Constr Build Mater 2020;239:117755. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117755.
[17] Debbarma S, Selvam M, Singh S. Can flexible pavements’ waste (RAP) be utilized in cement concrete pavements?--A critical review. Constr Build Mater 2020;259:120417. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117755.
[18] Singh D, Girimath S. Influence of RAP sources and proportions on fracture and low temperature cracking performance of polymer modified binder. Constr Build Mater 2016;120:10–8. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.05.094.
[19] Antunes V, Freire AC, Neves J. A review on the effect of RAP recycling on bituminous mixtures properties and the viability of multi-recycling. Constr Build Mater 2019;211:453–69. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.03.258.
[20] Khodadadi M, Moradi L, Dabir B, Moghadas Nejad F, Khodaii A. Reuse of drill cuttings in hot mix asphalt mixture: A study on the environmental and structure performance. Constr Build Mater 2020;256. https://doi.org/10.1016/j.conbuildmat.2020.119453.
[21] Khodadadi M, Khodaii A, Absi J, Tehrani FF, Hajikarimi P. An experimental length scale investigation on viscoelastic behavior of bituminous composites: Focusing on mortar scale. Constr Build Mater 2021;308:124766. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.124766.
[22] Hu K, Zhou J, Han S, Chen Y, Zhang W, Fan C. Silane coupling agent enhances recycle aggregate/asphalt interfacial properties: An experimental and molecular dynamics study. Mater Today Commun 2024;39:108681. https://doi.org/https://doi.org/10.1016/j.mtcomm.2024.108681.
[23] Basueny A, Perraton D, Carter A. Laboratory study of the effect of RAP conditioning on the mechanical properties of hot mix asphalt containing RAP. Mater Struct 2014;47:1425–50. https://doi.org/https://doi.org/10.1617/s11527-013-0127-0.
[24] Li J, Ni F, Lu Q. Experimental investigation into the multiscale performance of asphalt mixtures with high contents of reclaimed asphalt pavement. J Mater Civ Eng 2018;30:4018105. https://doi.org/https://doi.org/10.1061/(ASCE)MT.1943-5533.0002269.
[25] Islam MR, Salomon D, Wasiuddin NM. Investigation of oxidative aging of field-extracted asphalt binders at various conditions using carbonyl index. Constr Build Mater 2024;415:134969. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2024.134969.
[26] Wu S, Zhao Z, Xiao Y, Yi M, Chen Z, Li M. Evaluation of mechanical properties and aging index of 10-year field aged asphalt materials. Constr Build Mater 2017;155:1158–67. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.08.102.
[27] Liu H, Ju Z, Lv S, Lu W, Yang Y, Ge D. Laboratory aging method for simulating the extracted aged asphalt from reclaimed asphalt pavement. Case Stud Constr Mater 2024;21:e03651. https://doi.org/https://doi.org/10.1016/j.cscm.2024.e03651.
[28] Pradhan SK. Short-term and long-term aging effect of the rejuvenation on RAP binder and mixes for sustainable pavement construction. Int J Transp Sci Technol 2023;12:937–54. https://doi.org/https://doi.org/10.1016/j.ijtst.2022.09.005.
[29] Xu X, Wei L, Chen J, Rong H. Physical, rheological and micro characteristics of ARA/Nano-TiO2 composite modified asphalt before and after short-term aging. Mater Today Commun 2024;39:109097. https://doi.org/https://doi.org/10.1016/j.mtcomm.2024.109097.
[30] Kamboozia N, Saed SA, Rad SM. Rheological behavior of asphalt binders and fatigue resistance of SMA mixtures modified with nano-silica containing RAP materials under the effect of mixture conditioning. Constr Build Mater 2021;303:124433. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.124433.
[31] Mousavi Rad S, Kamboozia N, Anupam K, Saed SA. Experimental evaluation of the fatigue performance and self-healing behavior of nanomodified porous asphalt mixtures containing RAP materials under the aging condition and freeze--Thaw cycle. J Mater Civ Eng 2022;34:4022323. https://doi.org/https://doi.org/10.1061/(ASCE)MT.1943-5533.0004488.
[32] Alizadeh S, Shafabakhsh G, Sadeghnejad M. Sustainable asphalt mixtures: enhancing environmental impact by partial fine aggregate substitution with rubber powder and bitumen modification using Nano-SiO2. Int J Pavement Eng 2023;24:2257851. https://doi.org/https://doi.org/10.1080/10298436.2023.2257851.
[33] Albayati AH, Latief RH, Al-Mosawe H, Wang Y. Nano-Additives in Asphalt Binder: Bridging the Gap between Traditional Materials and Modern Requirements. Appl Sci 2024;14:3998. https://doi.org/https://doi.org/10.3390/app14103998.
[34] Zhou S, Yan J, Shi B, Li S, Ai C. Cost-effective enhancement of high viscosity modified bitumen anti-aging properties using organic layered double hydroxide/fume silica nanoparticles composite nanomaterials. J Clean Prod 2024;459:142538. https://doi.org/https://doi.org/10.1016/j.jclepro.2024.142538.
[35] Shafabakhsh GH, Ani OJ. Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Constr Build Mater 2015;98:692–702. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.08.083.
[36] Leiva-Villacorta F, Vargas-Nordcbeck A. Optimum content of nano-silica to ensure proper performance of an asphalt binder. Road Mater Pavement Des 2019;20:414–25. https://doi.org/https://doi.org/10.1080/14680629.2017.1385510.
[37] Bhat FS, Gilani TA, Din IMU, Aziz G, Mir MS, Shah AH, et al. Integration of nano Al2O3 and nano SiO2 in asphalt mixes: A comprehensive performance and durability evaluation. Constr Build Mater 2024;412:134687. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.134687.
[38] Adamu M, Mohammed BS, Shafiq N, Shahir Liew M. Effect of crumb rubber and nano silica on the fatigue performance of roller compacted concrete pavement. Cogent Eng 2018;5:1436027. https://doi.org/https://doi.org/10.1080/23311916.2018.1436027.
[39] Mirabdolazimi SM, Kargari AH, Pakenari MM. New achievement in moisture sensitivity of nano-silica modified asphalt mixture with a combined effect of bitumen type and traffic condition. Int J Pavement Res Technol 2021;14:105–15. https://doi.org/https://doi.org/10.1007/s42947-020-0043-y.
[40] Shafabakhsh G, Sadeghnejad M, Ebrahimnia R. Fracture resistance of asphalt mixtures under mixed-mode I/II loading at low-temperature: Without and with nano SiO2. Constr Build Mater 2021;266:120954. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120954.
[41] Cheraghian G, Wistuba MP. Effect of fumed silica nanoparticles on ultraviolet aging resistance of bitumen. Nanomaterials 2021;11:454. https://doi.org/https://doi.org/10.3390/nano11020454.
[42] Shafabakhsh GA, Sadeghnejad M, Ahoor B, Taheri E. Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen. Constr Build Mater 2020;237:117640. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.117640.
[43] ASTM A, others. Standard test method for resistance to plastic flow of bituminous mixtures using Marshall apparatus 1989. https://doi.org/https://www.astm.org/d1559-89.html.
[44] ASTM D. 8044; Standard Test Method for Evaluation of Asphalt Mixture Cracking Resistance using the Semi-Circular Bend Test (SCB) at Intermediate Temperatures. Am Soc Test Mater West Conshohocken, PA, USA 2016. https://doi.org/https://www.astm.org/d8044-16.html.
[45] AASHTO T. Resistance of Compacted Bituminous Mixture to Moisture Induced Damage for Superpave. Am Assoc State Highw Transp Off Washington, DC 2007. https://doi.org/https://rosap.ntl.bts.gov/view/dot/37962.
[46] EUROPEAN COMMITTEE FOR STANDARDIZATION. EN 12697-24: Bituminous Mixtures – Test Methods for Hot Mix Asphalt – Part 24: Ressistance to Fatigue. Brussels, 2004. n.d. https://doi.org/978 0 580 75769 3.