[1] Khan SA, Koç M, Al-Ghamdi SG. Sustainability assessment, potentials and challenges of 3D printed concrete structures: A systematic review for built environmental applications. J Clean Prod 2021;303:127027. https://doi.org/10.1016/j.jclepro.2021.127027.
[2] Valipour M, Yekkalar M, Shekarchi M, Panahi S. Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. J Clean Prod 2014;65:418–23. https://doi.org/10.1016/j.jclepro.2013.07.055.
[3] Tu H, Wei Z, Bahrami A, Ben Kahla N, Ahmad A, Özkılıç YO. Recent advancements and future trends in 3D concrete printing using waste materials. Dev Built Environ 2023;16:100187. https://doi.org/10.1016/j.dibe.2023.100187.
[4] Abdul-kareem M. Challenges, New Approaches, and Potential Future Paths for Three-Dimensional Printing (3DP) in Building Project: A Reviews. Al-Rafidain J Eng Sci 2025;3:113–28. https://doi.org/10.61268/kvakx321.
[5] Hassan H, Rodriguez-Ubinas E, Al Tamimi A, Trepci E, Mansouri A, Almehairbi K. Towards innovative and sustainable buildings: A comprehensive review of 3D printing in construction. Autom Constr 2024;163:105417. https://doi.org/10.1016/j.autcon.2024.105417.
[6] Moghayedi A, Mahachi J, Lediga R, Mosiea T, Phalafala E. Revolutionizing affordable housing in Africa: A comprehensive technical and sustainability study of 3D-printing technology. Sustain Cities Soc 2024;105:105329. https://doi.org/https://doi.org/10.1016/j.scs.2024.105329.
[7] Alhumayani H, Gomaa M, Soebarto V, Jabi W. Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete. J Clean Prod 2020;270:122463. https://doi.org/10.1016/j.jclepro.2020.122463.
[8] Bhattacherjee S, Basavaraj AS, Rahul A V., Santhanam M, Gettu R, Panda B, et al. Sustainable materials for 3D concrete printing. Cem Concr Compos 2021;122:104156. https://doi.org/10.1016/j.cemconcomp.2021.104156.
[9] Dey D, Srinivas D, Panda B, Suraneni P, Sitharam TG. Use of industrial waste materials for 3D printing of sustainable concrete: A review. J Clean Prod 2022;340:130749. https://doi.org/10.1016/j.jclepro.2022.130749.
[10] Nematollahi B, Xia M, Sanjayan J. Current progress of 3D concrete printing technologies. ISARC 2017 - Proc. 34th Int. Symp. Autom. Robot. Constr., vol. 34, IAARC Publications; 2017, p. 260–7. https://doi.org/10.22260/isarc2017/0035.
[11] Paul SC, van Zijl GPAG, Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp J 2018;24:784–98. https://doi.org/10.1108/RPJ-09-2016-0154.
[12] Guamán-Rivera R, Martínez-Rocamora A, García-Alvarado R, Muñoz-Sanguinetti C, González-Böhme LF, Auat-Cheein F. Recent Developments and Challenges of 3D-Printed Construction: A Review of Research Fronts. Buildings 2022;12:229. https://doi.org/10.3390/buildings12020229.
[13] Hossain MA, Zhumabekova A, Paul SC, Kim JR. A review of 3D printing in construction and its impact on the labor market. Sustain 2020;12:1–21. https://doi.org/10.3390/su12208492.
[14] Schuldt SJ, Jagoda JA, Hoisington AJ, Delorit JD. A systematic review and analysis of the viability of 3D-printed construction in remote environments. Autom Constr 2021;125:103642. https://doi.org/10.1016/j.autcon.2021.103642.
[15] Batikha M, Jotangia R, Baaj MY, Mousleh I. 3D concrete printing for sustainable and economical construction: A comparative study. Autom Constr 2022;134:104087. https://doi.org/10.1016/j.autcon.2021.104087.
[16] Hou S, Duan Z, Xiao J, Ye J. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Constr Build Mater 2021;273:121745. https://doi.org/10.1016/j.conbuildmat.2020.121745.
[17] Feng P, Meng X, Chen JF, Ye L. Mechanical Properties of Structures 3D-Printed With Cementitious Powders. 3D Concr Print Technol Constr Build Appl 2019;93:181–209. https://doi.org/10.1016/B978-0-12-815481-6.00009-9.
[18] Shakor P, Sanjayan J, Nazari A, Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Constr Build Mater 2017;138:398–409. https://doi.org/10.1016/j.conbuildmat.2017.02.037.
[19] García de Soto B, Agustí-Juan I, Hunhevicz J, Joss S, Graser K, Habert G, et al. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall. Autom Constr 2018;92:297–311. https://doi.org/10.1016/j.autcon.2018.04.004.
[20] Dixit MK. 3-D Printing in Building Construction: A Literature Review of Opportunities and Challenges of Reducing Life Cycle Energy and Carbon of Buildings. IOP Conf. Ser. Earth Environ. Sci., vol. 290, IOP Publishing; 2019, p. 12012. https://doi.org/10.1088/1755-1315/290/1/012012.
[21] Faludi J, Bayley C, Bhogal S, Iribarne M. Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototyp J 2015;21:14–33. https://doi.org/10.1108/RPJ-07-2013-0067.
[22] Kreiger M, Pearce JM. Environmental life cycle analysis of distributed three-dimensional printing and conventional manufacturing of polymer products. ACS Sustain Chem Eng 2013;1:1511–9. https://doi.org/10.1021/sc400093k.
[23] Biernacki JJ, Bullard JW, Sant G, Brown K, Glasser FP, Jones S, et al. Cements in the 21st century: Challenges, perspectives, and opportunities. J Am Ceram Soc 2017;100:2746–73. https://doi.org/10.1111/jace.14948.
[24] Markin V, Nerella VN, Schröfl C, Guseynova G, Mechtcherine V. Material design and performance evaluation of foam concrete for digital fabrication. Materials (Basel) 2019;12:2433. https://doi.org/10.3390/ma12152433.
[25] Yang H, Li W, Che Y. 3D Printing Cementitious Materials Containing Nano-CaCO3: Workability, Strength, and Microstructure. Front Mater 2020;7:260. https://doi.org/10.3389/fmats.2020.00260.
[26] Dziura P, Maroszek M, Góra M, Rudziewicz M, Pławecka K, Hebda M. Influence of the In-Fill Pattern of the 3D Printed Building Wall on Its Thermal Insulation. Materials (Basel) 2023;16:5772. https://doi.org/10.3390/ma16175772.
[27] Kapetaniou C, Rieple A, Pilkington A, Frandsen T, Pisano P. Building the layers of a new manufacturing taxonomy: How 3D printing is creating a new landscape of production eco-systems and competitive dynamics. Technol Forecast Soc Change 2018;128:22–35. https://doi.org/10.1016/j.techfore.2017.10.011.
[28] Qin S, Duan X, Khandan AS, Abdollahi S. An Introduction to Human Resources for Development and Innovation, Science Transformation into Industry Infrastructure by China’s New Universities: A Case Study of Green Materials. Sustain 2023;15:975. https://doi.org/10.3390/su15020975.
[29] Ma G, Li Y, Wang L, Zhang J, Li Z. Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers. Constr Build Mater 2020;241:117982. https://doi.org/10.1016/j.conbuildmat.2019.117982.
[30] Uppala SS, Tadikamalla MR. A review on 3D printing of concrete-the future of sustainable construction. I-Manager’s J Civ Eng 2017;7:49.
[31] Kazemian A, Yuan X, Cochran E, Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr Build Mater 2017;145:639–47. https://doi.org/10.1016/j.conbuildmat.2017.04.015.
[32] Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B. Particle-bed 3D printing in concrete construction – Possibilities and challenges. Cem Concr Res 2018;112:50–65. https://doi.org/10.1016/j.cemconres.2018.05.018.
[33] Lu B, Weng Y, Li M, Qian Y, Leong KF, Tan MJ, et al. A systematical review of 3D printable cementitious materials. Constr Build Mater 2019;207:477–90. https://doi.org/10.1016/j.conbuildmat.2019.02.144.
[34] Ji G, Ding T, Xiao J, Du S, Li J, Duan Z. A 3D printed ready-mixed concrete power distribution substation: Materials and construction technology. Materials (Basel) 2019;12:1540. https://doi.org/10.3390/ma12091540.
[35] Bello ND, Memari AM. A Structural and Thermal Comparative Review of 3D-Printed Wall Shapes. Designs 2023;7:80. https://doi.org/10.3390/designs7030080.
[36] Rehman AU, Kim JH. 3d concrete printing: A systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials (Basel) 2021;14:3800. https://doi.org/10.3390/ma14143800.
[37] Lim S, Buswell RA, Le TT, Austin SA, Gibb AGF, Thorpe T. Developments in construction-scale additive manufacturing processes. Autom Constr 2012;21:262–8. https://doi.org/10.1016/j.autcon.2011.06.010.
[38] Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater 2018;162:613–27. https://doi.org/10.1016/j.conbuildmat.2017.12.051.
[39] Weng Y, Li M, Tan MJ, Qian S. Design 3D Printing Cementitious Materials Via Fuller Thompson Theory and Marson-Percy Model. 3D Concr Print Technol Constr Build Appl 2019;163:281–306. https://doi.org/10.1016/B978-0-12-815481-6.00014-2.
[40] Panda B, Mohamed NAN, Paul SC, Singh GVPB, Tan MJ, Šavija B. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials (Basel) 2019;12:2149. https://doi.org/10.3390/ma12132149.
[41] Rubio M, Sonebi M, Amziane S. Fresh and rheological properties of 3D printing bio-cementbased materials. Acad J Civ Eng 2017;35:283–90.
[42] Bos FP, Ahmed ZY, Jutinov ER, Salet TAM. Experimental exploration of metal cable as reinforcement in 3D printed concrete. Materials (Basel) 2017;10:1314. https://doi.org/10.3390/ma10111314.
[43] Craveiro F, Nazarian S, Bartolo H, Bartolo PJ, Pinto Duarte J. An automated system for 3D printing functionally graded concrete-based materials. Addit Manuf 2020;33:101146. https://doi.org/10.1016/j.addma.2020.101146.
[44] Wolfs RJM, Bos FP, Salet TAM. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem Concr Res 2018;106:103–16. https://doi.org/10.1016/j.cemconres.2018.02.001.
[45] Lafhaj Z, Dakhli Z. Performance indicators of printed construction materials: A durability-based approach. Buildings 2019;9:97. https://doi.org/10.3390/buildings9040097.
[46] Al Rashid A, Khan SA, G. Al-Ghamdi S, Koç M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Autom Constr 2020;118:103268. https://doi.org/10.1016/j.autcon.2020.103268.
[47] du Plessis A, Babafemi AJ, Paul SC, Panda B, Tran JP, Broeckhoven C. Biomimicry for 3D concrete printing: A review and perspective. Addit Manuf 2021;38:101823. https://doi.org/10.1016/j.addma.2020.101823.
[48] Xu W. The world’s largest 3D-printed concrete bridge. Arch Technol 2019;25:6–9.
[49] Kruger J, Zeranka S, van Zijl G. Quantifying Constructability Performance of 3D Concrete Printing via Rheology-Based Analytical Models. RILEM Bookseries, vol. 23, Springer; 2020, p. 400–8. https://doi.org/10.1007/978-3-030-22566-7_46.
[50] Chen Y, Veer F, Çopuroğlu O. A critical review of 3D concrete printing as a low CO2 concrete approach. Heron 2017;62:167–94.
[51] Salah HA, Mutalib AA, Kaish ABMA, Syamsir A, Algaifi HA. Development of Ultra-High-Performance Silica Fume-Based Mortar Incorporating Graphene Nanoplatelets for 3-Dimensional Concrete Printing Application. Buildings 2023;13:1949. https://doi.org/10.3390/buildings13081949.
[52] Ma G, Salman NM, Wang L, Wang F. A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing. Constr Build Mater 2020;244:118305. https://doi.org/10.1016/j.conbuildmat.2020.118305.
[53] Hu H, Cao X, Zhang T, Chen Z, Xie J. Three-Dimensional Printing Materials for Cultural Innovation Products of Historical Buildings. Buildings 2022;12:624. https://doi.org/10.3390/buildings12050624.
[54] Xing S, Jiang Z, Zhang X, Wang Y. Product Design Scheme Generation and Optimization Decisions While Considering Remanufacturability. Mathematics 2022;10:2477. https://doi.org/10.3390/math10142477.
[55] Al-Majidi MH, Lampropoulos A, Cundy A, Meikle S. Development of geopolymer mortar under ambient temperature for in situ applications. Constr Build Mater 2016;120:198–211. https://doi.org/10.1016/j.conbuildmat.2016.05.085.
[56] Ahmed ZY, Bos FP, van Brunschot MCAJ, Salet TAM. On-demand additive manufacturing of functionally graded concrete. Virtual Phys Prototyp 2020;15:194–210. https://doi.org/10.1080/17452759.2019.1709009.
[57] Weng Y, Qian S, He L, Li M, Tan MJ. 3D printable high performance fiber reinforced cementitious composites for large-scale printing. Proc Int Conf Prog Addit Manuf 2018;2018-May:19–24. https://doi.org/10.25341/D4B591.
[58] Zareiyan B, Khoshnevis B. Effects of mixture ingredients on interlayer adhesion of concrete in Contour Crafting. Rapid Prototyp J 2018;24:584–92. https://doi.org/10.1108/RPJ-02-2017-0029.
[59] Bovea MD, Powell JC. Developments in life cycle assessment applied to evaluate the environmental performance of construction and demolition wastes. Waste Manag 2016;50:151–72. https://doi.org/10.1016/j.wasman.2016.01.036.
[60] Meyer C. The greening of the concrete industry. Cem Concr Compos 2009;31:601–5. https://doi.org/10.1016/j.cemconcomp.2008.12.010.
[61] Panda B, Tan MJ. Rheological behavior of high volume fly ash mixtures containing micro silica for digital construction application. Mater Lett 2019;237:348–51. https://doi.org/10.1016/j.matlet.2018.11.131.
[62] Chen Y, Veer F, Copuroglu O, Schlangen E. Feasibility of using low CO2 concrete alternatives in extrusion-based 3D concrete printing. RILEM Bookseries, vol. 19, Springer; 2019, p. 269–76. https://doi.org/10.1007/978-3-319-99519-9_25.
[63] Chen M, Yang L, Zheng Y, Huang Y, Li L, Zhao P, et al. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Constr Build Mater 2020;252:119090. https://doi.org/10.1016/j.conbuildmat.2020.119090.
[64] Chen Y, Li Z, Figueiredo SC, Çopuroğlu O, Veer F, Schlangen E. Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printing: A Fundamental Study of Extrudability and Early-Age Strength Development. Appl Sci 2019;9:1809. https://doi.org/10.3390/app9091809.
[65] Kruger J, Zeranka S, van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Constr Build Mater 2019;224:372–86. https://doi.org/10.1016/j.conbuildmat.2019.07.078.
[66] Mendoza Reales OA, Duda P, Silva ECCM, Paiva MDM, Filho RDT. Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes. Constr Build Mater 2019;219:91–100. https://doi.org/10.1016/j.conbuildmat.2019.05.174.
[67] Hai Alami A, Ghani Olabi A, Khuri S, Aljaghoub H, Alasad S, Ramadan M, et al. 3D printing in the food industry: Recent progress and role in achieving sustainable development goals. Ain Shams Eng J 2024;15:924. https://doi.org/10.1016/j.asej.2023.102386.
[68] Ding T, Xiao J, Zou S, Wang Y. Hardened properties of layered 3D printed concrete with recycled sand. Cem Concr Compos 2020;113:103724. https://doi.org/10.1016/j.cemconcomp.2020.103724.
[69] Christen H, Cho S, van Zijl G, de Villiers W. Phase change material infused recycled brick aggregate in 3D printed concrete. Heliyon 2022;8:100090. https://doi.org/10.1016/j.heliyon.2022.e11598.
[70] Zou S, Xiao J, Duan Z, Ding T, Hou S. On rheology of mortar with recycled fine aggregate for 3D printing. Constr Build Mater 2021;311:125312. https://doi.org/10.1016/j.conbuildmat.2021.125312.
[71] Yao Y, Hu M, Di Maio F, Cucurachi S. Life cycle assessment of 3D printing geo-polymer concrete: An ex-ante study. J Ind Ecol 2020;24:116–27. https://doi.org/10.1111/jiec.12930.
[72] Hammond GP, Jones CI. Embodied energy and carbon in construction materials. Proc Inst Civ Eng 2008;161:87–98.
[73] Nadagouda MN, Ginn M, Rastogi V. A review of 3D printing techniques for environmental applications. Curr Opin Chem Eng 2020;28:173–8. https://doi.org/https://doi.org/10.1016/j.coche.2020.08.002.
[74] Marques G, Pitarma R. A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things. Electronics 2019;8. https://doi.org/10.3390/electronics8020170.
[75] Issac MN, Kandasubramanian B. Review of manufacturing three-dimensional-printed membranes for water treatment. Environ Sci Pollut Res 2020;27:36091–108. https://doi.org/10.1007/s11356-020-09452-2.
[76] Silva WRL da, Kaasgaard M. Green Concrete for Sustainable 3DCP. Concr Int 2022;44:34–40.
[77] Gangotra A, Del Gado E, Lewis JI. 3D printing has untapped potential for climate mitigation in the cement sector. Commun Eng 2023;2:6. https://doi.org/10.1038/s44172-023-00054-7.
[78] Wang L, Nerella VN, Li D, Zhang Y, Ma B, Ivaniuk E, et al. Biochar-augmented climate-positive 3D printable concrete. Commun Mater 2024;5:257. https://doi.org/10.1038/s43246-024-00700-3.
[79] Heywood K, Nicholas P. Sustainability and 3D concrete printing: identifying a need for a more holistic approach to assessing environmental impacts. Archit Intell 2023;2:12. https://doi.org/10.1007/s44223-023-00030-3.
[80] Jahangir H, Nikkhah Z, Eidgahee DR, Esfahani MR. Performance Based Review and Fine-Tuning of TRM-Concrete Bond Strength Existing Models. J Soft Comput Civ Eng 2023;7:43–55. https://doi.org/10.22115/scce.2022.349483.1476.
[81] Janfada E, Nasseri H, Jahangir H. Performance Evaluation of Compressive Strength Models for SRP and SRG-Confined Concrete Columns. J Rehabil Civ Eng 2024;12:69–82. https://doi.org/10.22075/jrce.2023.30715.1855.
[82] Onyelowe KC, Ebid AM, Mahdi HA, Riofrio A, Eidgahee DR, Baykara H, et al. Optimal Compressive Strength of RHA Ultra-High-Performance Lightweight Concrete (UHPLC) and Its Environmental Performance Using Life Cycle Assessment. Civ Eng J 2022;8:2391–410. https://doi.org/10.28991/CEJ-2022-08-11-03.
[83] Onyelowe KC, Ebid AM, Mahdi HA, Soleymani A, Jahangir H, Dabbaghi F. Optimization of Green Concrete Containing Fly Ash and Rice Husk Ash Based on Hydro-Mechanical Properties and Life Cycle Assessment Considerations. Civ Eng J 2022;8:3912–38. https://doi.org/10.28991/CEJ-2022-08-12-018.
[84] Tinoco MP, de Mendonça ÉM, Fernandez LIC, Caldas LR, Reales OAM, Toledo Filho RD. Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. J Build Eng 2022;52:104456. https://doi.org/10.1016/j.jobe.2022.104456.
[85] Wang L, Liu Z, Yan Y, Li S, Xie Y. Overview of the application of ecological concrete in sponge city construction. Front Earth Sci 2023;10:1085419. https://doi.org/10.3389/feart.2022.1085419.
[86] Zechmeister C, Gil Pérez M, Dambrosio N, Knippers J, Menges A. Extension of Computational Co-Design Methods for Modular, Prefabricated Composite Building Components Using Bio-Based Material Systems. Sustain 2023;15:12189. https://doi.org/10.3390/su151612189.
[87] Eriksen FB, Kamari A. The Potential of Voluntary Sustainability Class to Leverage Sustainability in the Danish Construction Industry. Green Build Constr Econ 2023:48–62. https://doi.org/10.37256/gbce.4120232266.
[88] Flatt RJ, Wangler T. On sustainability and digital fabrication with concrete. Cem Concr Res 2022;158:106837. https://doi.org/10.1016/j.cemconres.2022.106837.
[89] Kuzmenko K, Gaudillière N, Feraille A, Dirrenberger J, Baverel O. Assessing the Environmental Viability of 3D Concrete Printing Technology. Impact Des. With All Senses, Springer; 2020, p. 517–28. https://doi.org/10.1007/978-3-030-29829-6_40.
[90] Mohammad M, Masad E, Al-Ghamdi SG. 3d concrete printing sustainability: A comparative life cycle assessment of four construction method scenarios. Buildings 2020;10:1–20. https://doi.org/10.3390/buildings10120245.
[91] Abdalla H, Fattah KP, Abdallah M, Tamimi AK. Environmental footprint and economics of a full‐scale 3d‐printed house. Sustain 2021;13:11978. https://doi.org/10.3390/su132111978.
[92] Agustí-Juan I, Müller F, Hack N, Wangler T, Habert G. Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. J Clean Prod 2017;154:330–40. https://doi.org/10.1016/j.jclepro.2017.04.002.
[93] Chen Y, He S, Gan Y, Çopuroğlu O, Veer F, Schlangen E. A review of printing strategies, sustainable cementitious materials and characterization methods in the context of extrusion-based 3D concrete printing. J Build Eng 2022;45:103599. https://doi.org/10.1016/j.jobe.2021.103599.
[94] Nwodo MN, Anumba CJ. A review of life cycle assessment of buildings using a systematic approach. Build Environ 2019;162:106290. https://doi.org/10.1016/j.buildenv.2019.106290.
[95] Long WJ, Lin C, Tao JL, Ye TH, Fang Y. Printability and particle packing of 3D-printable limestone calcined clay cement composites. Constr Build Mater 2021;282:122647. https://doi.org/10.1016/j.conbuildmat.2021.122647.
[96] Akhoundi B, Behravesh AH, Bagheri Saed A. An innovative design approach in three-dimensional printing of continuous fiber–reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation. Proc Inst Mech Eng Part B J Eng Manuf 2020;234:243–59. https://doi.org/10.1177/0954405419843780.
[97] Akhoundi B, Salari M. Improving Standby Power Management in Buildings: User-centric Design Strategies for Mitigating Human Errors in Standby Power Management and Energy Efficiency. Iran J Energy Environ 2025;16:17–27. https://doi.org/10.5829/ijee.2025.16.01.03.