[1] Long AE, Henderson GD, Montgomery FR. Why assess the properties of near-surface concrete? Constr Build Mater 2001. https://doi.org/10.1016/S0950-0618(00)00056-8.
[2] Neville A. Consideration of durability of concrete structures: Past, present, and future. Mater Struct 2001. https://doi.org/10.1007/bf02481560.
[3] Basheer L, Kropp J, Cleland DJ. Assessment of the durability of concrete from its permeation properties: A review. Constr Build Mater 2001. https://doi.org/10.1016/S0950-0618(00)00058-1.
[4] Pan X, Shi Z, Shi C, Ling TC, Li N. A review on surface treatment for concrete – Part 2: Performance. Constr Build Mater 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.128.
[5] Mithanthaya IR, Shet VB, Mokshitha M. Mechanism of healing, strength, and durability concepts of bacteria concrete - A review. IOP Conf Ser Earth Environ Sci 2024;1387. https://doi.org/10.1088/1755-1315/1387/1/012003.
[6] Wang J, Ji S, Huang S, Jiang Z, Wang S, Zhang H, et al. Crack Sealing in Concrete with Biogrout: Sustainable Approach to Enhancing Mechanical Strength and Water Resistance. Materials (Basel) 2024;17:1–17. https://doi.org/10.3390/ma17246283.
[7] Jiang L, Li P, Wang W, Zhang Y, Li Z. A self-healing method for concrete cracks based on microbial-induced carbonate precipitation: bacteria, immobilization, characterization, and application. J Sustain Cem Mater 2024. https://doi.org/10.1080/21650373.2023.2263447.
[8] Folić R, Zenunović D, Brujić Z. Effects of carbonation and chloride ingress on the durability of concrete structures. J Serbian Chem Soc 2024;89:729–42. https://doi.org/10.2298/JSC240102030F.
[9] Mutitu DK, Muthengia JW, Mwirichia R, Thiong’o JK, Mulwa MO, Genson M. Microbial effect on water sorptivity and sulphate ingress by Bacillus megaterium on mortars prepared using Portland Pozzolana cement. J Appl Microbiol 2021. https://doi.org/10.1111/jam.14976.
[10] Osta MO, Mukhtar F. Effect of bacteria on uncracked concrete mechanical properties correlated with damage self-healing efficiency – A critical review. Dev Built Environ 2024. https://doi.org/10.1016/j.dibe.2023.100301.
[11] Kaushal V, Saeed E. Sustainable and Innovative Self-Healing Concrete Technologies to Mitigate Environmental Impacts in Construction. CivilEng 2024;5:549–58. https://doi.org/10.3390/civileng5030029.
[12] Gerilla GP, Teknomo K, Hokao K. An environmental assessment of wood and steel reinforced concrete housing construction. Build Environ 2007. https://doi.org/10.1016/j.buildenv.2006.07.021.
[13] Chen L, Nouri Y, Allahyarsharahi N, Naderpour H, Rezazadeh Eidgahee D, Fakharian P. Optimizing compressive strength prediction in eco-friendly recycled concrete via artificial intelligence models. Multiscale Multidiscip Model Exp Des 2025;8:24. https://doi.org/10.1007/s41939-024-00641-x.
[14] Koch. Corrosion costs and preventive strategies in the United States. US Federal Highway Administration. Mater Perform 2002.
[15] Day KW. Properties of concrete. Concr. Mix Des. Qual. Control Specif., 2021. https://doi.org/10.4324/9780203967874-11.
[16] Infrastructure W. Public spending on transportation and water infrastructure. Transp Water Infrastruct Spend 2023;2017:1–66.
[17] Brent P, Bridge S, Project C. 2025: c 2021: c 2025.
[18] Mohamed A, Fan M, Bertolesi E, Chen H, Fu Z, Roberts T. Microbial loading and self-healing in cementitious materials: A review of immobilisation techniques and materials. Mater Des 2024;245:113249. https://doi.org/10.1016/j.matdes.2024.113249.
[19] Huang H, Ye G, Qian C, Schlangen E. Self-healing in cementitious materials: Materials, methods and service conditions. Mater Des 2016. https://doi.org/10.1016/j.matdes.2015.12.091.
[20] Sun J. Open Aircraft Performance Modeling Based on an Analysis of Aircraft Surveillance Data. 2019. https://doi.org/10.4233/uuid.
[21] Kim TK, Park JS. Experimental evaluation of the durability of concrete repair materials. Appl Sci 2021. https://doi.org/10.3390/app11052303.
[22] A.M. Neville. Concrete technology Second edition. United Kingdom, Prentice Hall 2010.
[23] Neville AM. Properties of concrete-5th edition. 2011.
[24] Anum I, Williams F., Adole A., Haruna A. Properties of Different Grades of Concrete Using Mix Design Method. Int J Geol Agric Environ Sci 2014.
[25] Provis JL, Bílek V, Buchwald A, Dombrowski-Daube K, Varela B. Durability and testing – Physical processes. RILEM State-of-the-Art Reports 2014. https://doi.org/10.1007/978-94-007-7672-2_10.
[26] Cabral AR, Moreira JF V., Jugnia L-B. Biocover Performance of Landfill Methane Oxidation: Experimental Results. J Environ Eng 2010. https://doi.org/10.1061/(asce)ee.1943-7870.0000182.
[27] Al-Heetimi OT, Van De Ven CJC, Van Geel PJ, Rayhani MT. Impact of temperature on the performance of compost-based landfill biocovers. J Environ Manage 2023. https://doi.org/10.1016/j.jenvman.2023.118780.
[28] Cheng L, Shahin MA, Mujah D. Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. J Geotech Geoenvironmental Eng 2017. https://doi.org/10.1061/(asce)gt.1943-5606.0001586.
[29] Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun K Ben, Gonzalez-Muñoz MT. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 2003. https://doi.org/10.1128/AEM.69.4.2182-2193.2003.
[30] Jimenez-Lopez C, Jroundi F, Rodriguez-Gallego M, Arias JM, González-Muñoz MT. Biomineralization induced by Myxobacteria. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol., 2007.
[31] Wang R, Qian C, Wang J. Study on microbiological precipitation of CaCO3. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Southeast Univ (Natural Sci Ed 2005.
[32] Cheng L, Shahin MA. Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization, 2019. https://doi.org/10.1007/978-981-13-0149-0_3.
[33] Zhang N, Fu Q, Wang J, Lu L, Luo Q, Xing F. Evaluation of compressive strength and chloride permeability of cement-based materials with high-volume compound mineral admixtures. Adv Cem Res 2024. https://doi.org/10.1680/jadcr.23.00185.
[34] Islam MM, Hoque N, Islam M, Ibney Gias I. An Experimental Study on the Strength and Crack Healing Performance of E. coli Bacteria-Induced Microbial Concrete. Adv Civ Eng 2022. https://doi.org/10.1155/2022/3060230.
[35] Kumar Jogi P, Vara Lakshmi TVS. Self healing concrete based on different bacteria: A review. Mater. Today Proc., 2020. https://doi.org/10.1016/j.matpr.2020.08.765.
[36] Bang SS, Galinat JK, Ramakrishnan V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 2001. https://doi.org/10.1016/S0141-0229(00)00348-3.
[37] Piras S, Salathia S, Guzzini A, Zovi A, Jackson S, Smirnov A, et al. Biomimetic Use of Food-Waste Sources of Calcium Carbonate and Phosphate for Sustainable Materials—A Review. Materials (Basel) 2024. https://doi.org/10.3390/ma17040843.
[38] Javeed Y, Goh Y, Mo KH, Yap SP, Leo BF. Microbial self-healing in concrete: A comprehensive exploration of bacterial viability, implementation techniques, and mechanical properties. J Mater Res Technol 2024. https://doi.org/10.1016/j.jmrt.2024.01.261.
[39] British Standards Institution BSI. BS EN 450-1:2012: Fly ash for concrete - Part 1: Definition, specifications and conformity criteria. Br Stand 2012.
[40] van Raaij WF. The Use of Natural Resources. Handb Econ Psychol 2018:638–55. https://doi.org/10.1007/978-94-015-7791-5_18.
[41] Kiersma ME. Occupational Safety and Health Administration. Encycl. Toxicol. Third Ed., 2014. https://doi.org/10.1016/B978-0-12-386454-3.00344-4.
[42] Zhang Y, Li J, Liu F, Yan H, Li J. Mediative mechanism of bicarbonate on anaerobic propionate degradation revealed by microbial community and thermodynamics. Environ Sci Pollut Res 2018. https://doi.org/10.1007/s11356-018-1430-7.
[43] EC. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Parliam 2000. https://doi.org/10.1039/ap9842100196.
[44] Anon. Aquatic Life Ambient Water Quality Criteria for Ammonia – Freshwater. United States Environ Prot Agency 2013.
[45] Program T. ASCP 7 TH CONCRETE PAVEMENTS CONFERENCE PAVING THE FUTURE TECHNICAL PROGRAM 2023.
[46] Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 2010. https://doi.org/10.1016/j.ecoleng.2008.12.036.
[47] Jonkers HM, Schlangen E. Development of a bacteria-based self healing concrete. Proc. Int. FIB Symp. 2008 - Tailor Made Concr. Struct. New Solut. our Soc., 2008. https://doi.org/10.1201/9781439828410.ch72.
[48] Murari K, Kaur P. Development of Sustainable Concrete Using Bacteria as Self-healing Agent. Lect. Notes Civ. Eng., 2021. https://doi.org/10.1007/978-981-15-9554-7_62.
[49] Rao MVS, Reddy VS, Hafsa M, Veena P, Anusha P. Bioengineered concrete - A sustainable self-healing construction material. Res J Eng Sci 2013.
[50] Nimafar M, Samali B, Hosseini SJ, Akhlaghi A. Use of bacteria externally for repairing cracks and improving properties of concrete exposed to high temperatures. Crystals 2021. https://doi.org/10.3390/cryst11121503.
[51] Wang J, Ersan YC, Boon N, De Belie N. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl Microbiol Biotechnol 2016. https://doi.org/10.1007/s00253-016-7370-6.
[52] Tang H, Li XG. Research on autogenous healing of cracks in cement based materials. Wuhan Ligong Daxue Xuebao/Journal Wuhan Univ Technol 2008.
[53] Van Tittelboom K, De Belie N, De Muynck W, Verstraete W. Use of bacteria to repair cracks in concrete. Cem Concr Res 2010. https://doi.org/10.1016/j.cemconres.2009.08.025.
[54] Mors RM, Jonkers HM. Bacteria‐based self‐healing concrete: Evaluation of full scale demonstrator projects. RILEM Tech Lett 2019. https://doi.org/10.21809/rilemtechlett.2019.93.
[55] Wiktor V, Jonkers HM. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 2011. https://doi.org/10.1016/j.cemconcomp.2011.03.012.
[56] Stieber M, Haeseler F, Werner P, Frimmel FH. A rapid screening method for micro-organisms degrading polycyclic aromatic hydrocarbons in microplates. Appl Microbiol Biotechnol 1994. https://doi.org/10.1007/BF00173340.
[57] Zhao H, Xiao Q, Huang D, Zhang S. Influence of pore structure on compressive strength of cement mortar. Sci World J 2014. https://doi.org/10.1155/2014/247058.
[58] Jiang G, Zhou M, Chiu TH, Sun X, Keller J, Bond PL. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers. Environ Sci Technol 2016. https://doi.org/10.1021/acs.est.6b02093.
[59] Newman EB. General microbiology. Res Microbiol 1994. https://doi.org/10.1016/0923-2508(94)90009-4.