Evaluation of Silica Fume on the Performance of Corroded Concrete with Bacteria Using NDT Methods

Document Type : Regular Paper

Authors

1 Magister of Civil Engineering, Universitas Muhammadiyah Yogyakarta, Bantul 55183, Special Region of Yogyakarta, Indonesia

2 Department of Civil Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta, Indonesia

3 Civil and Architectural Engineering Department, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia

Abstract

Silica fume can be used in place of cement to make reinforced concrete more resistant to corrosion. Cracks and corrosion can also be treated using Bacillus subtilis bacteria added to the mix. Using non-destructive testing, this study intends to ascertain the effects of silica fume addition to concrete bacteria on the mechanical and corrosion characteristics of the material. The beams and cylinders used in the tests were 50 x 10 x 10 cm3 and 30 x 15 cm3, respectively. In place of cement, the specimens had 8%, 10%, and 12% silica fume, and 10 ml (105 cfu/ml) of Bacillus subtilis bacteria were added. The direct current power supply is used in the accelerated corrosion process for 48, 96, and 168 hours. Regarding compressive strength, the typical concrete specimen tested at 37.59 MPa was the strongest. Silica fume concrete outperforms regular concrete in the flexural strength test. Compared to regular concrete, superior results were obtained from non-destructive tests conducted on silica fume concrete utilizing impact echo and resistivity instruments. The longer the concrete is exposed to corrosion, the lower the impact echo and resistivity values that are subsequently measured. By accelerating the corrosion process of silica fume concrete by 48, 96, and 168 hours, respectively, the impact echo and resistivity values for corrosion resistance reached their maximums of 12%, 10%, and 8%.

Graphical Abstract

Evaluation of Silica Fume on the Performance of Corroded Concrete with Bacteria Using NDT Methods

Highlights

  • Replacing 8%, 10%, and 12% of cement with silica fume improves the corrosion resistance of concrete.
  • Adding Bacillus subtilisbacteria helps heal cracks and reduces corrosion in the concrete mix.
  • Impact echo and resistivity tests were used as Non-Destructive Testing (NDT) methods to evaluate strength and corrosion resistance.
  • Silica fume concrete showed higher flexural strength, while regular concrete had the highest compressive strength of 37.59 MPa.
  • Silica fume concrete showed better corrosion resistance, with the best results at 12% silica fume after 48 hours of accelerated corrosion testing.
  • Corrosion exposure lowered impact echo and resistivity values, but silica fume concrete consistently outperformed regular concrete.

Keywords

Main Subjects


[1]     Wasim M, A.A A, Abu B, Alshaikh I. Future Directions for the Application of Zero Carbon Concrete in Civil Engineering- A Review. Case Stud Constr Mater 2022;17:e01318. https://doi.org/10.1016/j.cscm.2022.e01318.
[2]     Zamba DD, Mohammed TA. Self-healing performance of normal strength concrete with Bacillus subtilis bacteria. J Build Pathol Rehabil 2023;9:4. https://doi.org/10.1007/s41024-023-00356-5.
[3]     Hashmi A, Khan M, Bilal M, Shariq M, Baqi A. Green Concrete: An Eco-Friendly Alternative to the OPC Concrete. CONSTRUCTION 2022;2:93–103. https://doi.org/10.15282/construction.v2i2.8710.
[4]     Nafees A, Amin M, Khan K, Nazir K, Ali M, Javed MF, et al. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Polymers (Basel) 2021;14:30. https://doi.org/10.3390/polym14010030.
[5]     ACI-Committee-234. ACI 234R-06 R12 Guide for the Use of Silica Fume in Concrete_MyCivil.ir. Guid Use Silica Fume Concr 2006.
[6]     Zaki A, Husnah. Evaluation of fly ash concrete in salt environment. E3S Web Conf 2023;429. https://doi.org/10.1051/e3sconf/202342905030.
[7]     Rahita A, Zaki A. Corrosion Analysis on Reinforcing Steel in Concrete Using the Eddy Current Method. 2023. https://doi.org/10.1109/ICE3IS59323.2023.10335487.
[8]     Patil A. Study of Influence of Corrosion and Cracking on Bond Behavior of Reinforced Concrete Member. J Struct Eng Manag 2017;4:58–67.
[9]     Ghewa G. Efek Penggunaan Supplementary Material Pada Beton, Ditinjau Terhadap Susut Dan Induksi Keretakan Akibat Korosi. J Rekayasa Konstr Mek Sipil 2022;5:61–7. https://doi.org/10.54367/jrkms.v5i2.2001.
[10]   Hussein ZM, Abedali AH, Ahmead AS. Improvement Properties of Self -Healing Concrete by Using Bacteria. IOP Conf Ser Mater Sci Eng 2019;584:12034. https://doi.org/10.1088/1757-899X/584/1/012034.
[11]    Ha Nguyen T, Ghorbel E. Effects of Bacillus Subtilis on the Compressive Strength, Porosity and Rapid Chloride Permeability of Concrete. AJCE - Spec Issue 2019;37:223–8.
[12]   Siddique R, Jameel A, Singh M, Barnat-Hunek D, Kunal, Aït-Mokhtar A, et al. Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Constr Build Mater 2017;142:92–100. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.03.057.
[13]   Rashidi A, Zain S, Ahmadi R. Mix proportion for medium grade concrete with silica fume as cement replacement for general purpose construction. IOP Conf Ser Mater Sci Eng 2021;1101:12013. https://doi.org/10.1088/1757-899X/1101/1/012013.
[14]   Škulteckė J, Vaitkus A, Šernas O, Čygas D. Effect of Silica Fume on High-strength Concrete Performance. 2020. https://doi.org/10.11159/icsect20.162.
[15]   Prayuda H, Soebandono B, Cahyati MD, Monika F. Repairing of Flexural Cracks on Reinforced Self-Healing Concrete Beam using Bacillus Subtillis Bacteria. Int J Integr Eng 2020;12:300–9. https://doi.org/10.30880/ijie.2020.12.04029.
[16]   Nindhita KW, Zaki A. State of the art: Correlation self-healing agent and corrosion on concrete. E3S Web Conf 2023;429. https://doi.org/10.1051/e3sconf/202342905034.
[17]   Aswin M, Andres, Gotami R. Studies on Strength and Flexural Behaviour of Reinforced Concrete Beams with the Corroded Steel Reinforcements as a result of Sodium Chloride (NaCl). J Phys Conf Ser 2023;2421:12029. https://doi.org/10.1088/1742-6596/2421/1/012029.
[18]   Mahbubi K, Zaki A, Nugroho G. Bibliometric and Scientometric Trends in Structural Health Monitoring Using Fiber-Optic Sensors: A Comprehensive Review. J Civ Hydraul Eng 2024;2:51–64. https://doi.org/10.56578/jche020104.
[19]   Karla H, Danner T, Geiker M. Non-destructive Test Methods for Corrosion Detection in Reinforced Concrete Structures. Nord Concr Res 2020;62:41–61. https://doi.org/10.2478/ncr-2019-0005.
[20]   Zaki A, Fikri M, Wibisono C, Rosyidi SAP. Evaluating Pre-Corrosion and Post-Corrosion of Oil Palm Shell Concrete with Non-Destructive Testing. Key Eng Mater 2023;942:137–62. https://doi.org/10.4028/p-9qfaiq.
[21]   Badan Standarisasi Nasional. Metode uji untuk analisis saringan agregat halus dan agregat kasar. 2012.
[22]   SNI 1970. Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus. Badan Standar Nas Indones 2008:7–18.
[23]   Indonesia SN, Nasional BS. Metode uji bahan yang lebih halusdari saringan 75 ?m (No. 200) dalam agregat mineraldengan pencucian(ASTM C117–2004, IDT)ICS 2004.
[24]   Badan Standarisasi Nasional. Metode uji berat jenis dan penyerapan aggregat kasar. 2016.
[25]   Standar Nasional Indonesia Cara uji keausan agregat dengan mesin abrasi Los Angeles n.d.
[26]   ACI Committee. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91) Chairman, Subcommittee A. 1991.
[27]   SNI 2493:2011. SNI 2493:2011 Tata Cara Pembuatan dan Perawatan Benda Uji Beton di Laboratorium. Badan Standar Nas Indones 2011:23.
[28]   Mulyati M, Arkis Z. Pengaruh Metode Perawatan Beton Terhadap Kuat Tekan Beton Normal. J Tek Sipil ITP 2020;7:78–84. https://doi.org/10.21063/jts.2020.v702.05.
[29]   Zaki A, Ying T, Chai HK, Aggelis D. Assessment of Corrosion Damage using Acoustic Emission Technique under Load Testing. 2015.
[30]   AASHTO. Aashto-Tp-95-14 n.d.
[31]   Aslam M, Shafigh P, Jumaat MZ, Bhosale A, Zade NP, Sarkar P, et al. iTeh Standards iTeh Standards Document Preview. Nanomaterials 2022;126:13–5. https://doi.org/10.1520/C1383-15.10.1520/C1383-15R22.
[32]   Nindhita KW, Zaki A, Zeyad AM. Effect of Bacillus Subtilis Bacteria on the mechanical properties of corroded self-healing concrete. Frat Ed Integrita Strutt 2024;18:140–58. https://doi.org/10.3221/IGF-ESIS.68.09.
[33]   Haynes GS, Baboian R. Laboratory Corrosion Tests and Standards 1985. https://doi.org/10.1520/STP866-EB.
[34]   Badan Standarisasi Nasional. Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder. 2011.
[35]   SNI 4154-2014. Metode Uji Kekuatan Lentur Beton (Menggunakan Balok Sederhana dengan Beban Terpusat di Tengah Bentang). Badan Standar Nas Indones 2014:1–12.
[36]   Arman A, Nugroho F, Mulyati M, Azman F. PENGARUH PENAMBAHAN SILIKA FUME TERHADAP KUAT TEKAN BETON. J Teknol Dan Vokasi 2023;2:9–16. https://doi.org/10.21063/jtv.2024.2.1.2.
[37]   Wolo D, Ngapa YD, Carvallo L. Potensi Zeolit Alam Ende Sebagai Bahan Aditif Semen Untuk Meningkatkan Kuat Tekan Beton. Opt J Pendidik Fis 2019;3:34–41.
[38]   Sutriono B, Trimurtiningrum R, Rizkiardi A. Pengaruh Silica Fume sebagai Subtitusi Semen terhadap Nilai Resapan dan Kuat Tekan Mortar (Hal. 12-21). RekaRacana J Tek Sipil 2018;4:12. https://doi.org/10.26760/rekaracana.v4i4.12.
[39]   Kearsley E, Joyce A. Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs. J South African Inst Civ Eng 2014;56:21–9.
[40]   Dacuan C, Abellana V, Canseco-Tuñacao HA. Mechanical Properties of Corroded-Damaged Reinforced Concrete Pile-supporting Wharves. Civ Eng J 2020;6:2375–96. https://doi.org/10.28991/cej-2020-03091624.
[41]   Sharkawi A, Seyam A. Efficiency of accelerated techniques for assessing corrosion protection of blended cements. Mag Concr Res 2018;71:637–46. https://doi.org/10.1680/jmacr.17.00269.
[42]   Alhawat M, Khan A, Ashour A. Evaluation of Steel Corrosion in Concrete Structures Using Impact-Echo Method. Adv Mater Res 2020;1158:147–64. https://doi.org/10.4028/www.scientific.net/AMR.1158.147.
[43]   Zaki A, Chai HK, Aggelis DG, Alver N. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique. Sensors 2015;15:19069–101. https://doi.org/10.3390/s150819069.
[44]   Chaudhary S, Sinha A. Effect of Silica Fume on Permeability and Microstructure of High Strength Concrete. Civ Eng J 2020;6:1697–703. https://doi.org/10.28991/cej-2020-03091575.
[45]   Patil A. Influence of Corrosion on Flexural Strength of Concrete. J Struct Eng Manag 2017;4:35–42.
[46]   Matlab T, Breesem K, Hassen D, Jaafar A. Stress-strain behaviour and flexural strength of silica fume polymer-modified concrete. IOP Conf Ser Mater Sci Eng 2020;881:12167. https://doi.org/10.1088/1757-899X/881/1/012167.
[47]   Cara uji kuat tekan beton dengan benda uji silinder Badan Standardisasi Nasional 2011.
[48]   Zaki A, Pratama TY, Wibisono CA, Saleh F. Pengaruh Cks Sebagai Pengganti Agregat Pada Kuat Tekan Beton. J Ris Rekayasa Sipil 2023;6:119. https://doi.org/10.20961/jrrs.v6i2.69039.
[49]   Aqli K, S E, Wisnumurti W. Pengaruh Limbah Batu Onyx Pengganti Agregat Kasar Beton Terhadap Pola Retak Balok Beton Bertulang. CRANE Civ Eng Res J 2021;2:33–8. https://doi.org/10.34010/crane.v2i1.5014.
[50]   C. N. Application of Bacillus Subtilis Bacteria for Improving Properties and Healing of Cracks in Concrete. Int J Adv Res Trends Eng Technol 2018;5:118. https://doi.org/10.20247/IJARTET.2018.05S05030023.
[51]   Vijay K, Murmu M, Deo S. Bacteria based self healing concrete – A review. Constr Build Mater 2017;152:1008–14. https://doi.org/10.1016/j.conbuildmat.2017.07.040.
[52]   Feng J, Chen B, Sun W, Wang Y. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr Build Mater 2021;280:122460. https://doi.org/10.1016/j.conbuildmat.2021.122460.
[53]   Manvith Kumar Reddy C, Ramesh B, Macrin D, Reddy K. Influence of bacteria Bacillus subtilis and its effects on flexural strength of concrete. Mater. Today Proc., vol. 33, Elsevier Ltd; 2020, p. 4206–11. https://doi.org/10.1016/j.matpr.2020.07.225.
[54]   Priyom SN, Ismal MM, Shumi W. Assessment on strength characteristics of microbial concrete by using bacillus subtilis as self-healing agent: A critical review. Int J Sustain Constr Eng Technol 2020;11:34–44. https://doi.org/10.30880/ijscet.2021.11.04.004.
[55]   Stanaszek-Tomal E. Bacterial Concrete as a Sustainable Building Material? Sustainability 2020;12. https://doi.org/10.3390/su12020696.