[1] Wasim M, A.A A, Abu B, Alshaikh I. Future Directions for the Application of Zero Carbon Concrete in Civil Engineering- A Review. Case Stud Constr Mater 2022;17:e01318. https://doi.org/10.1016/j.cscm.2022.e01318.
[2] Zamba DD, Mohammed TA. Self-healing performance of normal strength concrete with Bacillus subtilis bacteria. J Build Pathol Rehabil 2023;9:4. https://doi.org/10.1007/s41024-023-00356-5.
[3] Hashmi A, Khan M, Bilal M, Shariq M, Baqi A. Green Concrete: An Eco-Friendly Alternative to the OPC Concrete. CONSTRUCTION 2022;2:93–103. https://doi.org/10.15282/construction.v2i2.8710.
[4] Nafees A, Amin M, Khan K, Nazir K, Ali M, Javed MF, et al. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Polymers (Basel) 2021;14:30. https://doi.org/10.3390/polym14010030.
[5] ACI-Committee-234. ACI 234R-06 R12 Guide for the Use of Silica Fume in Concrete_MyCivil.ir. Guid Use Silica Fume Concr 2006.
[6] Zaki A, Husnah. Evaluation of fly ash concrete in salt environment. E3S Web Conf 2023;429. https://doi.org/10.1051/e3sconf/202342905030.
[7] Rahita A, Zaki A. Corrosion Analysis on Reinforcing Steel in Concrete Using the Eddy Current Method. 2023. https://doi.org/10.1109/ICE3IS59323.2023.10335487.
[8] Patil A. Study of Influence of Corrosion and Cracking on Bond Behavior of Reinforced Concrete Member. J Struct Eng Manag 2017;4:58–67.
[9] Ghewa G. Efek Penggunaan Supplementary Material Pada Beton, Ditinjau Terhadap Susut Dan Induksi Keretakan Akibat Korosi. J Rekayasa Konstr Mek Sipil 2022;5:61–7. https://doi.org/10.54367/jrkms.v5i2.2001.
[10] Hussein ZM, Abedali AH, Ahmead AS. Improvement Properties of Self -Healing Concrete by Using Bacteria. IOP Conf Ser Mater Sci Eng 2019;584:12034. https://doi.org/10.1088/1757-899X/584/1/012034.
[11] Ha Nguyen T, Ghorbel E. Effects of Bacillus Subtilis on the Compressive Strength, Porosity and Rapid Chloride Permeability of Concrete. AJCE - Spec Issue 2019;37:223–8.
[12] Siddique R, Jameel A, Singh M, Barnat-Hunek D, Kunal, Aït-Mokhtar A, et al. Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Constr Build Mater 2017;142:92–100. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2017.03.057.
[13] Rashidi A, Zain S, Ahmadi R. Mix proportion for medium grade concrete with silica fume as cement replacement for general purpose construction. IOP Conf Ser Mater Sci Eng 2021;1101:12013. https://doi.org/10.1088/1757-899X/1101/1/012013.
[14] Škulteckė J, Vaitkus A, Šernas O, Čygas D. Effect of Silica Fume on High-strength Concrete Performance. 2020. https://doi.org/10.11159/icsect20.162.
[15] Prayuda H, Soebandono B, Cahyati MD, Monika F. Repairing of Flexural Cracks on Reinforced Self-Healing Concrete Beam using Bacillus Subtillis Bacteria. Int J Integr Eng 2020;12:300–9. https://doi.org/10.30880/ijie.2020.12.04029.
[16] Nindhita KW, Zaki A. State of the art: Correlation self-healing agent and corrosion on concrete. E3S Web Conf 2023;429. https://doi.org/10.1051/e3sconf/202342905034.
[17] Aswin M, Andres, Gotami R. Studies on Strength and Flexural Behaviour of Reinforced Concrete Beams with the Corroded Steel Reinforcements as a result of Sodium Chloride (NaCl). J Phys Conf Ser 2023;2421:12029. https://doi.org/10.1088/1742-6596/2421/1/012029.
[18] Mahbubi K, Zaki A, Nugroho G. Bibliometric and Scientometric Trends in Structural Health Monitoring Using Fiber-Optic Sensors: A Comprehensive Review. J Civ Hydraul Eng 2024;2:51–64. https://doi.org/10.56578/jche020104.
[19] Karla H, Danner T, Geiker M. Non-destructive Test Methods for Corrosion Detection in Reinforced Concrete Structures. Nord Concr Res 2020;62:41–61. https://doi.org/10.2478/ncr-2019-0005.
[20] Zaki A, Fikri M, Wibisono C, Rosyidi SAP. Evaluating Pre-Corrosion and Post-Corrosion of Oil Palm Shell Concrete with Non-Destructive Testing. Key Eng Mater 2023;942:137–62. https://doi.org/10.4028/p-9qfaiq.
[21] Badan Standarisasi Nasional. Metode uji untuk analisis saringan agregat halus dan agregat kasar. 2012.
[22] SNI 1970. Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus. Badan Standar Nas Indones 2008:7–18.
[23] Indonesia SN, Nasional BS. Metode uji bahan yang lebih halusdari saringan 75 ?m (No. 200) dalam agregat mineraldengan pencucian(ASTM C117–2004, IDT)ICS 2004.
[24] Badan Standarisasi Nasional. Metode uji berat jenis dan penyerapan aggregat kasar. 2016.
[25] Standar Nasional Indonesia Cara uji keausan agregat dengan mesin abrasi Los Angeles n.d.
[26] ACI Committee. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91) Chairman, Subcommittee A. 1991.
[27] SNI 2493:2011. SNI 2493:2011 Tata Cara Pembuatan dan Perawatan Benda Uji Beton di Laboratorium. Badan Standar Nas Indones 2011:23.
[28] Mulyati M, Arkis Z. Pengaruh Metode Perawatan Beton Terhadap Kuat Tekan Beton Normal. J Tek Sipil ITP 2020;7:78–84. https://doi.org/10.21063/jts.2020.v702.05.
[29] Zaki A, Ying T, Chai HK, Aggelis D. Assessment of Corrosion Damage using Acoustic Emission Technique under Load Testing. 2015.
[30] AASHTO. Aashto-Tp-95-14 n.d.
[31] Aslam M, Shafigh P, Jumaat MZ, Bhosale A, Zade NP, Sarkar P, et al. iTeh Standards iTeh Standards Document Preview. Nanomaterials 2022;126:13–5. https://doi.org/10.1520/C1383-15.10.1520/C1383-15R22.
[32] Nindhita KW, Zaki A, Zeyad AM. Effect of Bacillus Subtilis Bacteria on the mechanical properties of corroded self-healing concrete. Frat Ed Integrita Strutt 2024;18:140–58. https://doi.org/10.3221/IGF-ESIS.68.09.
[33] Haynes GS, Baboian R. Laboratory Corrosion Tests and Standards 1985. https://doi.org/10.1520/STP866-EB.
[34] Badan Standarisasi Nasional. Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder. 2011.
[35] SNI 4154-2014. Metode Uji Kekuatan Lentur Beton (Menggunakan Balok Sederhana dengan Beban Terpusat di Tengah Bentang). Badan Standar Nas Indones 2014:1–12.
[36] Arman A, Nugroho F, Mulyati M, Azman F. PENGARUH PENAMBAHAN SILIKA FUME TERHADAP KUAT TEKAN BETON. J Teknol Dan Vokasi 2023;2:9–16. https://doi.org/10.21063/jtv.2024.2.1.2.
[37] Wolo D, Ngapa YD, Carvallo L. Potensi Zeolit Alam Ende Sebagai Bahan Aditif Semen Untuk Meningkatkan Kuat Tekan Beton. Opt J Pendidik Fis 2019;3:34–41.
[38] Sutriono B, Trimurtiningrum R, Rizkiardi A. Pengaruh Silica Fume sebagai Subtitusi Semen terhadap Nilai Resapan dan Kuat Tekan Mortar (Hal. 12-21). RekaRacana J Tek Sipil 2018;4:12. https://doi.org/10.26760/rekaracana.v4i4.12.
[39] Kearsley E, Joyce A. Effect of corrosion products on bond strength and flexural behaviour of reinforced concrete slabs. J South African Inst Civ Eng 2014;56:21–9.
[40] Dacuan C, Abellana V, Canseco-Tuñacao HA. Mechanical Properties of Corroded-Damaged Reinforced Concrete Pile-supporting Wharves. Civ Eng J 2020;6:2375–96. https://doi.org/10.28991/cej-2020-03091624.
[41] Sharkawi A, Seyam A. Efficiency of accelerated techniques for assessing corrosion protection of blended cements. Mag Concr Res 2018;71:637–46. https://doi.org/10.1680/jmacr.17.00269.
[42] Alhawat M, Khan A, Ashour A. Evaluation of Steel Corrosion in Concrete Structures Using Impact-Echo Method. Adv Mater Res 2020;1158:147–64. https://doi.org/10.4028/www.scientific.net/AMR.1158.147.
[43] Zaki A, Chai HK, Aggelis DG, Alver N. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique. Sensors 2015;15:19069–101. https://doi.org/10.3390/s150819069.
[44] Chaudhary S, Sinha A. Effect of Silica Fume on Permeability and Microstructure of High Strength Concrete. Civ Eng J 2020;6:1697–703. https://doi.org/10.28991/cej-2020-03091575.
[45] Patil A. Influence of Corrosion on Flexural Strength of Concrete. J Struct Eng Manag 2017;4:35–42.
[46] Matlab T, Breesem K, Hassen D, Jaafar A. Stress-strain behaviour and flexural strength of silica fume polymer-modified concrete. IOP Conf Ser Mater Sci Eng 2020;881:12167. https://doi.org/10.1088/1757-899X/881/1/012167.
[47] Cara uji kuat tekan beton dengan benda uji silinder Badan Standardisasi Nasional 2011.
[48] Zaki A, Pratama TY, Wibisono CA, Saleh F. Pengaruh Cks Sebagai Pengganti Agregat Pada Kuat Tekan Beton. J Ris Rekayasa Sipil 2023;6:119. https://doi.org/10.20961/jrrs.v6i2.69039.
[49] Aqli K, S E, Wisnumurti W. Pengaruh Limbah Batu Onyx Pengganti Agregat Kasar Beton Terhadap Pola Retak Balok Beton Bertulang. CRANE Civ Eng Res J 2021;2:33–8. https://doi.org/10.34010/crane.v2i1.5014.
[50] C. N. Application of Bacillus Subtilis Bacteria for Improving Properties and Healing of Cracks in Concrete. Int J Adv Res Trends Eng Technol 2018;5:118. https://doi.org/10.20247/IJARTET.2018.05S05030023.
[51] Vijay K, Murmu M, Deo S. Bacteria based self healing concrete – A review. Constr Build Mater 2017;152:1008–14. https://doi.org/10.1016/j.conbuildmat.2017.07.040.
[52] Feng J, Chen B, Sun W, Wang Y. Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Constr Build Mater 2021;280:122460. https://doi.org/10.1016/j.conbuildmat.2021.122460.
[53] Manvith Kumar Reddy C, Ramesh B, Macrin D, Reddy K. Influence of bacteria Bacillus subtilis and its effects on flexural strength of concrete. Mater. Today Proc., vol. 33, Elsevier Ltd; 2020, p. 4206–11. https://doi.org/10.1016/j.matpr.2020.07.225.
[54] Priyom SN, Ismal MM, Shumi W. Assessment on strength characteristics of microbial concrete by using bacillus subtilis as self-healing agent: A critical review. Int J Sustain Constr Eng Technol 2020;11:34–44. https://doi.org/10.30880/ijscet.2021.11.04.004.
[55] Stanaszek-Tomal E. Bacterial Concrete as a Sustainable Building Material? Sustainability 2020;12. https://doi.org/10.3390/su12020696.