Impact of Incorporating Rattan Cane in Red Brick Unit Interlocking Systems on Compression and Shear Strength Properties

Document Type : Regular Paper

Authors

Civil Engineering Department, Faculty of Engineering, Universitas Negeri Padang, Padang, Indonesia

Abstract

The interlocking mechanism enhances the material's shear strength by increasing its resistance to shear forces and reducing the likelihood of brittle failure. In this study, rattan was employed as the interlocking material due to its inherent ductility, which is anticipated to improve the shear performance of masonry walls. This system was applied to locally produced red brick units in West Sumatra, Indonesia. The proposed interlocking system introduces a lightweight, affordable, and environmentally friendly alternative to conventional strengthening techniques. The home industry usually makes red bricks in Indonesia with minimal supervision; hence, the compression and shear strength are inadequate. The test objects were red bricks available in West Sumatra, Indonesia. Rattan interlocked these bricks at penetration depths of 0.5 cm, 1 cm, and 1.5 cm. Compressive and shear strengths were tested on the masonry with these interlocking configurations. The results showed that the bricks with 1.5 cm interlocking had the best performance; their compressive strength of 11.74 Kg/cm2 decreased by only 13% compared to bricks without an interlocking system of 13.44 Kg/cm2. The shear strength was 5.988 Kg/cm2, which increased by 63% compared to the brick unit without an interlocking system, which was 3.599 Kg/cm2

Graphical Abstract

Impact of Incorporating Rattan Cane in Red Brick Unit Interlocking Systems on Compression and Shear Strength Properties

Highlights

  • Examined how utilizing rattan cane affected red brick units.
  • This study used the interlocking method.
  • The brick unit with 1.5 cm interlocking had the best performance.
  • The interlocking rattan material in the brick red unit contributes positively.

Keywords

Main Subjects


[1]     Al-Fakih A, Mohammed BS, Nuruddin F, Nikbakht E. Development of Interlocking Masonry Bricks and its’ Structural Behaviour: A Review Paper. IOP Conf Ser Earth Environ Sci 2018;140. https://doi.org/10.1088/1755-1315/140/1/012127.
[2]     Shi T, Zhang X, Hao H, Chen C. Experimental and numerical investigation on the compressive properties of interlocking blocks. Eng Struct 2021;228:111561. https://doi.org/10.1016/j.engstruct.2020.111561.
[3]     Shi T, Zhang X, Hao H, Xie G. Numerical derivation of homogenised constitutive relation for masonry wall made of mortar-less interlocking bricks. Adv Struct Eng 2025;0:1–24. https://doi.org/10.1177/13694332251322588.
[4]     Furukawa A, Prasetyo JJ, Kiyono J. Performance of Interlocking Brick Walls Against Out-of-Plane Excitation. Int J GEOMATE 2022;22:100–5. https://doi.org/10.21660/2022.89.gxi413.
[5]     SNI 15-2094-2000. Bata Merah Pejal untuk Pasangan Dinding. Badan Standardisasi Nasional; 2000.
[6]     Paulmakesh A, Makebo GM. Interlocking Stabilized Soil blocks using red earth in Construction 2021;12:1283–92.
[7]     Mirasa AK, Nurmasyittah S, Besar A, Asrah H, Shahadahtul N. Effect of Quarry Dust as a Sand Replacement on the Properties of Interlocking Effect of Quarry Dust as a Sand Replacement on the Properties of Interlocking Brick 2019.
[8]     Ag Mumin AM, Tahir MM, Ngian SP, Shukor H, Khan MR, Tukirin SA. Flexural behaviour of interlocking brick system with grout cement mixed with various fibre. IOP Conf Ser Mater Sci Eng 2020;849. https://doi.org/10.1088/1757-899X/849/1/012064.
[9]     Joyklad P, Ali N, Rashid MU, Hussain Q, Magbool HM, Elnemr A, et al. Strength Enhancement of Interlocking Hollow Brick Masonry Walls with Low-Cost Mortar and Wire Mesh. Infrastructures 2021;6. https://doi.org/doi.org/10.3390/infrastructures6120166.
[10]   Sandra N, Yusmar F, Alperi I. The Effectiveness of using Interlocking Bricks in Housing Walls. Proc Vocat Eng Int Conf 2024;5:717–20.
[11]    Fachri Z, Darsan H. Perencanaan Alat Interlocking Bricks System Dengan Sistem Hidrolik Terkontrol. J-Innovation 2015;4.
[12]   Juliafad E. Defect Study On Single Storey Reinforced Concrete Building In West Sumatra: Before And After 2009 West Sumatra Earthquake. Int J GEOMATE 2021;20:77.
[13]   Juliafad E, Andayono T. Study on building permit awareness in West Sumatra, Indonesia. IOP Conf Ser Earth Environ Sci 2021;708. https://doi.org/10.1088/1755-1315/708/1/012093.
[14]   Livitsanos G, Shetty N, Verstrynge E, Wevers M, Hemelrijck D Van, Aggelis DG. Shear failure characterization in masonry components made with different mortars based on combined NDT methods. Constr Build Mater 2019;220:690–700. https://doi.org/10.1016/j.conbuildmat.2019.06.058.
[15]   Juliafad E, Gokon H. Seismic Fragility Function for Single Storey Masonry Wall Rc Building in Padang City, Indonesia. Int J GEOMATE 2022;22:39–46. https://doi.org/10.21660/2022.94.3160.
[16]   Saleem MU, Numada M, Nasir M, Meguro K. Seismic response of PP-band and FRP retrofitted house models under shake table testing. Constr Build Mater 2016;111:298–316. https://doi.org/10.1016/j.conbuildmat.2016.02.073.
[17]   Alsadey S. Effect of Polypropylene Fiber on Properties of Mortar. Int J Energy Sci Eng Vol 2016;2:8–12.
[18]   Yamamoto K, Rajasekharan S, Meguro K. STUDY ON MOISTURE EFFECTS ON MASONRY. 17th World Conf Earthq Eng 2020.
[19]   Multazam Z, Yamamoto K, Timsina K, Gadagamma CK, Meguro K. Shaking table tests of a one ‑ quarter scale model of concrete hollow block masonry houses retrofitted with fiber ‑ reinforced paint. Sci Rep 2024:1–11. https://doi.org/10.1038/s41598-024-58365-4.
[20]   Melinda AP, Juliafad E. Experimental Study of Masonry Wall Strengthened by Polypropylene Fiber Mortar. Int J Adv Sci Eng Inf Technol 2022;12:1066–72. https://doi.org/10.18517/ijaseit.12.3.11198.
[21]   Juliafad E, Restu LJ, Yusmar F, Putra RR, Meguro K. Experimental Study on Compressive Strength and Shear Strength of Masonry Unit With Fiber Glass and Polypropylene Fiber Paint Coating. J Teknol 2024;86:85–93. https://doi.org/10.11113/jurnalteknologi.v86.21658.
[22]   Das IP, Kini PG, Prashant S. A systematic literature review of bamboo as reinforcement in concrete. Discov Sustain 2025;6. https://doi.org/10.1007/s43621-025-01132-w.
[23]   Soleymani A, Jahangir H, Nehdi ML. Damage detection and monitoring in heritage masonry structures: Systematic review. Constr Build Mater 2023;397:132402. https://doi.org/10.1016/j.conbuildmat.2023.132402.
[24]   Priok Rashid SM, Soleymani A, Mofidi M. A Comprehensive Review of Utilizing Smart Bricks in Structural Health Monitoring and Damage Detection of Masonry Structures BT  - Damage Detection and Structural Health Monitoring of Concrete and Masonry Structures: Novel Techniques and Applications. In: Jahangir H, Arora HC, Dos Santos JVA, Kumar K, Kumar A, Kapoor NR, editors., Singapore: Springer Nature Singapore; 2025, p. 399–422. https://doi.org/10.1007/978-981-97-8975-7_14.
[25]   Jahangir H, Esfahani MR. Bond Behavior Investigation Between Steel Reinforced Grout Composites and Masonry Substrate. Iran J Sci Technol Trans Civ Eng 2022;46:3519–35. https://doi.org/10.1007/s40996-022-00826-9.
[26]   Sangeetha P, Revanth Kumar G, Sanjeev Kumar G, Antony Alias Abi D. In-Plane Shear Behaviour of Brick Masonry Wallets Strengthened with GFRP and Textile Reinforced Mortars. J Rehabil Civ Eng 2025;13:67–80. https://doi.org/10.22075/jrce.2025.36075.2216.
[27]   Eftekhar Afzali S, Ghasemi M, Rahimiratki A, Mehdizadeh B, Yousefieh N, Asgharnia M. Compaction and Compression Behavior of Waste Materials and Fiber-Reinforced Cement-Treated Sand. J Struct Des Constr Pract 2025;30. https://doi.org/10.1061/JSDCCC.SCENG-1643.
[28]   Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 2023;47:1790–802. https://doi.org/10.1016/j.istruc.2022.12.007.
[29]   Soleymani A, Rezazadeh Eidgahee D, Jahangir H. Textile-reinforced mortar-masonry bond strength calibration using machine learning methods. Artif. Intell. Appl. Sustain. Constr., Elsevier; 2024, p. 301–15. https://doi.org/10.1016/B978-0-443-13191-2.00001-8.
[30]   Rasidi N, Rochman T, Sumardi S, Purnomo F. Structural behavior of lightweight interlocking brick system. 1st Annu Technol Appl Sci Eng Conf 2020. https://doi.org/10.1088/1757-899X/732/1/012026.
[31]   Shi T, Zhang X, Hao H, Xie G. Experimental and numerical studies of the shear resistance capacities of interlocking blocks. J Build Eng 2021;44:103230. https://doi.org/10.1016/j.jobe.2021.103230.
[32]   Abdullah ESR, Mirasa AK, Asrah H, Lim CH. Review on interlocking compressed earth brick. IOP Conf Ser Earth Environ Sci 2020;476. https://doi.org/10.1088/1755-1315/476/1/012029.
[33]   Liu H, Liu P, Lin K, Zhao S. Cyclic behavior of mortarless brick joints with different interlocking shapes. Materials (Basel) 2016;9:1–12. https://doi.org/10.3390/ma9030166.
[34]   Xie G, Zhang X, Hao H, Shi T, Cui L, Thomas J. Behaviour of reinforced mortarless interlocking brick wall under cyclic loading. Eng Struct 2023;283:115890. https://doi.org/10.1016/j.engstruct.2023.115890.
[35]   Irawan AP, Daywin FJ, Fanando, Agustino T. Mechanical characteristics of rattan reinforced fiberglass and epoxy composites for shank prosthesis application. Int J Eng Technol 2016;8:1543–50.
[36]   Al-fakih A, Mubarak M, Mohammed BS, Liew MS, Amila N, Abdullah W, et al. Experimental study on axial compressive behavior of rubberized interlocking masonry walls. J Build Eng 2020:101107. https://doi.org/10.1016/j.jobe.2019.101107.
[37]   Ferretti F, Ferracuti B, Mazzotti C, Savoia M. Destructive and minor destructive tests on masonry buildings : Experimental results and comparison between shear failure criteria. Constr Build Mater 2019;199:12–29. https://doi.org/10.1016/j.conbuildmat.2018.11.246.
[38]   Suhendra, Handayani E, Revita M. Karakteristik fisik bata merah dan kaitannya dengan analisa harga satuan pekerjaan. J Ilm Univ Batanghari Jambi 2015;15:158–63.
[39]   Triarko K. Dikbud Malut Data Sekolah Rusak Akibat Gempa di Halsel. Cendana News 2019.
[40]   Pari R, Kalima T. KLASIFIKASI MUTU 11 JENIS ROTAN INDONESIA BERDASARKAN KERAPATAN DAN KETEGUHAN LENTUR ( Quality Classification of 11 Indonesian Rattan Species Based on Density and Bending Strength ) 2018;36:13–22.
[41]   Kaaba S, Sultan MA, Samad S. Flexural Capacity of Rattan Cane Reinforced Concrete Beams. E3S Web Conf 2021. https://doi.org/doi.org/10.1051/e3sconf/202132810018.
[42]   Shien NK, Delia ED, Ming CY. Compressive Failure of Rattan Reinforced Soil Mixture. Int Conf Technol Eng Sci 2020 2020. https://doi.org/10.1088/1757-899X/917/1/012006.
[43]   Harjoko M, Nasution MZ, Rachman O. Studi Karakteristik Sifat Fisik dan Mekanik Rotan pada Contoh Uji Kecil Bebas Cacat 1994.
[44]   Al-fakih A, Mohammed BS, Wahab MMA, Liew MS, Amran YHM. Characteristic compressive strength correlation of rubberized concrete interlocking masonry wall. Structures 2020;26:169–84. https://doi.org/10.1016/j.istruc.2020.04.010.
[45]   SNI 03-1737-1989. Tata cara pelaksanaan lapis aspal beton (laston) untuk jalan raya. Balitbang PU; 1989.
[46]   SNI 1970. Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus. Badan Standar Nas Indones 2008:7–18.