[1] Li, K.Q., Yin, Z.Y., Qi, J.L., & Liu Y. State of the art: Constitutive modeling of frozen soils. Arch Comput Methods Eng 2024;31:3801–42.
[2] Nishimura, S., Gens, A., Olivella, S., & Jardine R. THM coupled finite element analysis of frozen soil: formulation and application. Geotechnique 2009;59:159–71.
[3] Yang, Y., Lai, Y., Dong, Y., & Li S. The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures. Cold Reg Sci Technol 2010;60:154–60.
[4] Yao, X., Qi, J., Liu, M., & Yu F. A frozen soil creep model with strength attenuationA frozen soil creep model with strength attenuation. Acta Geotech 2017;12:1385–93.
[5] Hou, F., Lai, Y., Liu, E., Luo, H., & Liu X. A creep constitutive model for frozen soils with different contents of coarse grains. Cold Reg Sci Technol 2018;145:119–26.
[6] Li, D., Zhang, C., & Ding G. Fractional derivative-based creep constitutive model of deep artificial frozen soil. Cold Reg Sci Technol 2020;170.
[7] He, J., Niu, F., Jiang, H., & Jiao C. Fractional viscoelastic-plastic constitutive model for frozen soil based on microcosmic damage mechanism. Mech Mater 2023.
[8] Xu, G., Wu, W., & Qi J. An extended hypoplastic constitutive model for frozen sand. Soils Found 2016;56:704–11.
[9] Xu, G., Wu, W., & Qi J. Modeling the viscous behavior of frozen soil with hypoplasticity. Int J Numer Anal Methods Geomech 2016;40:2061–73.
[10] Xu, X., Wang, Y., Yin, Z., & Zhang H. Effect of temperature and strain rate on mechanical characteristics and constitutive model of frozen Helin loess. Cold Reg Sci Technol 2017;136:44–51.
[11] Mohammadi, B.H., & Ardakani A. Numerical prediction of circular tunnel seismic behavior using hypoplastic soil constitutive model. Int J Geotech Eng 2018:1–14.
[12] Mohammadi, B.H., & Ardakani A. Calibration of hypoplastic constitutive model with elastic strain range for Firoozkuh sand. Geotech Geol Eng 2020;38:5279–93.
[13] Latha, G.M., Dash, S.K., and Rajagopal, K. ’ ’Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings. Geotech Geol Eng 2008;26:387–98.
[14] Khedkar, M., & Mandal J. Pullout response of cellular reinforcement under low normal pressure. Int Jounral Geotech Eng 2013;3:75–87.
[15] Biabani, M.M., Indraratna, B., and Ngo NT. ’ ’Modeling of geocell reinforced sub ballast subjected to cyclic loading. Geotextile Geomembr 2016;44:489–503.
[16] Tavakoli, G.T.M, and Motarjemi F. ’ ’Interfacial properties of geocell reinforced granular soils. Geotextile Geomembr 2018;46:384–95.
[17] Fakharian, K., & Pilban A. Pullout tests on diagonally enhanced geocells embedded in sand to improve load-deformation response subjected to significant planar tensile loads. Geotextile Geomembr 2021;49:1229–44.
[18] Namaei-kohal, A., Ardakani, A., & Hassanlourad M. Cyclic and post-cyclic geocell pullout behavior in cohesionless soi. Sci Iran 2023:1–36.
[19] Li, C., Vennapusa, P.K.R., Ashlock, J., & White DJ. Mechanistic-based comparisons for freeze-thaw performance of stabilized unpaved roads. Cold Reg Sci Technol 2017;141:97–108.
[20] Cui, F., Xiao, C., Han, J., Gao, S., & Tian W. Performance of laboratory geogrid-reinforced retaining walls under freeze-thaw cycles. Geosynth Int 2022;29:81–98.
[21] Fattah MA and MY. Assessment of two nearby interfering strip footings of different embedment depths in saturated cohesive soils. Mag Civ Eng 2024;14:149.
[22] Fattah, M. Y., Al-Haddad,, L.A., Mo’men Ayasrah, Jaber, A., and SA-H. Coupled Finite Element and Artificial Neural Network Analysis of Interfering Strip Footings in Saturated Cohesive Soils. Transp Infrastruct Geotechnol 2024;11:2168–85.
[23] Ayasrah, M., & Fattah MY. 3D numerical response of different pipe pile under combined loadings condition embedded in loose sand. Int J Geotech Eng 2024;18:702–718.
[24] Fattah MA and MY. Finite Element Analysis of Two Nearby Interfering Strip Footings Embedded in Saturated Cohesive Soils. Civ Eng J 2023;9:1–18.
[25] Bauer E. Calibration of comprehensive hypoplastiv model for granular materials. Soils Found 1996;36:13–26.
[26] Niemunis, A., & Herle I. Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive-Frictional Mater 1997;2:279–99.
[27] Yu, F., Guo, P., & Na S. A framework for constructing elastoplastic constitutive models for frozen and unfrozen soils. Int J Numer Anal Methods Geomech 2022;46:436–66.
[28] Leshchinsky, B., and Ling, H.I. ’ ’Effects of geocell confinement on strength and deformation behavior of gravel. J Geotech Geoenvironmental Eng 2013;139:340–52.
[29] Namaei-kohal, A. Ardakani, A., and Hassanlourad M. ’ ’Hypolastic Soil Model Parameters calibration For Tehran Silica Sand and Verification with a Monotonic Geocell Pullout Test. Arab J Geosci 2022;15:824-837.
[30] Ardakani, A., and Namaei A. ’ ’Numerical Investigation of Geocell Reinforced Slopes Behavior by considering Geocell Geometry Effect. Geomech Eng 2021;24:589–97.