[1] Richard, F.E., Brandtzaeg, A., Brown, R.L. (1928). “A study of the failure of concrete under combined compressive stresses”. University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station.
[2] Kheyroddin, A., Naderpour, H. and Ahmadi, M. (2014). “Compressive Strength of Confined Concrete in CCFST Columns”. Journal of Rehabilitation in Civil Engineering, Vol. 2, NO. 1, pp.106-113.
[3]. Fanggi, B.A.L., and Hadi, M.N. (2011). “The Behaviour of Carbon Fibre Reinforced Polymer Confined Concrete Cylinders under High Temperature Exposure”. Concrete Building a Sustainable Future, pp. 1-9.
[4]. Campione, G., La Mendola, L., Monaco, A., Valenza, A. and Fiore, V. (2015). “Behavior in compression of concrete cylinders externally wrapped with basalt fibers”. Composites Part B: Engineering, Vol. 69, pp.576-586.
[5] Sadeghian, P., Fam, A. (2014). “A rational approach toward strain efficiency factor of fiber-reinforced polymer-wrapped concrete columns”. ACI Structural Journal. Vol. 111, No. 1, pp.135.
[6] Wu, G., Lü, Z.T., Wu, Z.S. (2006). “Strength and ductility of concrete cylinders confined with FRP composites”. Construction and building materials, Vol. 20, NO. 3, pp.134-148.
[7] Karabinis, A.I., and Rousakis, T.C. (2001). “A model for the mechanical behaviour of the FRP confined columns”. In Proceedings of the International Conference on FRP Com‐posites in Civil Engineering, pp. 317-326.
[8] Li, Y.F., Lin, C.T., and Sung, Y.Y. (2003). “A constitutive model for concrete confined with carbon fiber reinforced plastics”. Mechanics of Materials, Vol. 35, NO. 3, pp.603-619.
[9] Ozbakkaloglu, T., and Saatcioglu, M. (2006). “Seismic behavior of high-strength concrete columns confined by fiber-reinforced polymer tubes”. Journal of Composites for Construction, Vol. 10, No. 6, pp. 538-549.
[10] Abbasnia, R., Ahmadi, R., and Ziaadiny, H. (2012). “Effect of confinement level, aspect ratio and concrete strength on the cyclic stress–strain behavior of FRP-confined concrete prisms”. Composites Part B: Engineering, Vol. 43, No. 2, pp.825-831.
[11] y Basalo, F.J.D.C., Matta, F., and Nanni, A. (2012). “Fiber reinforced cement-based composite system for concrete confinement”. Construction and Building Materials, Vol. 32, pp.55-65.
[12] Seible, F., Priestley, M.N., Hegemier, G.A., and Innamorato, D. (1997). “Seismic retrofit of RC columns with continuous carbon fiber jackets”. Journal of composites for construction, Vol. 1, No. 2, pp.52-62.
[13] Matthys, S., Toutanji, H., and Taerwe, L. (2006). “Stress–strain behavior of large-scale circular columns confined with FRP composites”. Journal of Structural Engineering, Vol. 132, No. 1, pp.123-133.
[14] Karam, G., and Tabbara, M. (2005). “Confinement effectiveness in rectangular concrete columns with fiber reinforced polymer wraps”. Journal of Composites for Construction, Vol. 9, No. 5, pp.388-396.
[15] Shahawy, M., Mirmiran, A., and Beitelman, T. (2000). “Tests and modeling of carbon-wrapped concrete columns”. Composites Part B: Engineering, Vol. 31, No. 6, pp.471-480.
[16] Lam, L., and Teng, J.G. (2003). “Design-oriented stress–strain model for FRP-confined concrete”. Construction and building materials, Vol. 17, No. 6, pp.471-489.
[17] Lim, J.C., and Ozbakkaloglu, T. (2014). “Influence of silica fume on stress–strain behavior of FRP-confined HSC”. Construction and Building Materials, Vol. 63, pp.11-24.
[18] Berthet, J.F., Ferrier, E., and Hamelin, P., (2005). “Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study”. Construction and Building Materials, Vol. 19, No. 3, pp.223-232.
[19] Di Ludovico, M., Prota, A., and Manfredi, G. (2010). “Structural upgrade using basalt fibers for concrete confinement. Journal of composites for construction”. Vol. 14. No. 5,pp.541-552.
[20] Triantafillou, T.C., Papanicolaou, C.G., Zissimopoulos, P., and Laourdekis, T. (2006). “Concrete confinement with textile-reinforced mortar jackets”. ACI Structural Journal, Vol. 103, No. 1, p.28.
[21] Kodur, V.K.R., and Bisby, L.A. (2005).” Evaluation of fire endurance of concrete slabs reinforced with fiber-reinforced polymer bars”. Journal of structural engineering, Vol. 131, No. 1, pp.34-43.
[22] Bisby, L.A., Green, M.F., and Kodur, V.K.R. (2005). “Modeling the behavior of fiber reinforced polymer-confined concrete columns exposed to fire”. Journal of Composites for Construction, Vol. 9, No. 1, pp.15-24.
[23] Wang, Y.C., Wong, P.M.H., and Kodur, V.K.R. (2003). “Mechanical properties of fibre reinforced polymer reinforcing bars at elevated temperatures”. SFPE/ASCE Specialty Conference: Designing Structures for Fire, Baltimore, MD., pp. 183-192.
[24] Colajanni, P., De Domenico, F., Recupero, A., and Spinella, N. (2014). “Concrete columns confined with fibre reinforced cementitious mortars: experimentation and modelling”. Construction and Building Materials, Vol. 52, pp.375-384.
[25] Reddy, D.V., Sobhan, K., and Young, J. (2006). “Effect of fire on structural elements retrofitted by carbon fiber reinforced polymer composites”. In 31st conference on our world in concrete & structures, pp. 16-17.
[26] Trapko, T. (2013). “Fibre reinforced cementitious matrix confined concrete elements”. Materials & Design, 44, pp.382-391.
[27] Al-Salloum, Y.A., Elsanadedy, H.M., and Abadel, A.A. (2011). “Behavior of FRP-confined concrete after high temperature exposure”. Construction and Building Materials, Vol. 25, No. 2, pp.838-850.
[28] Kurtz, S., and Balaguru, P. (2001). “Comparison of inorganic and organic matrices for strengthening of RC beams with carbon sheets”. Journal of Structural Engineering, Vol. 127, No. 1, pp.35-42.
[29] Cree, D., Chowdhury, E.U., Green, M.F., Bisby, L.A., and Bénichou, N. (2012). “Performance in fire of FRP-strengthened and insulated reinforced concrete columns”. Fire safety journal, Vol. 54, pp.86-95.
[30] Toutanji, H. (1999). “Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets”. ACI materials journal, Vol. 96, No. 3, pp.397-404.
[31] Teng, J.G., Jiang, T., Lam, L., and Luo, Y.Z. (2009). “Refinement of a design-oriented stress–strain model for FRP-confined concrete”. Journal of Composites for Construction, Vol. 13, No. 4, pp.269-278.