[1] LeRoy, D.H., and Kauhl, N.E. (1997). "Rehabilitation of the Macomb dam bridge." Practical Solutions for Bridge Strengthening and Rehabilitation, Washington.
[2] Vaysburd, A.M., and Emmons, P.H. (2004). "Corrosion inhibitors and other protective systems in concrete repair: concepts or misconcepts." Cement and Concrete Composites (Elsevier), Vol. 26, pp. 255-263.
[3] Alizadeh, R., Ghods, P., Chini, M., Hoseini, M., Ghalibafian, M., Shekarchi, M. (2008). "Effect of curing conditions on the service life design of RC structure in the Persian Gulf region."
Journal of Materials in Civil Engineering (ASCE), Vol. 20(1), pp. 2-8.
[4] Ghoddousi, P., Ganjian, E., Parhizkar, T., Ramezanianpour, A.A. (1998). "Concrete technology in the environmental conditions of Persian Gulf." BHRC Publication.
[5] Temperley, T.G. (1965). "Corrosion phenomena in the Coastal areas of the Persian Gulf." Corrosion Science (Elsevier), Vol. 5, pp. 581-589.
[6] Valipour, M., Pargar, F., Shekarchi, M., Khani, S., Moradian, M. (2013). "In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment." Construction and Building Materials (Elsevier), Vol. 46, pp. 63-70.
[7] Farahani, A., Taghaddos, H., Shekarchi, M. (2018). "Chloride diffusion modeling in pozzolanic concrete in marine site." ACI Materials Journal, Vol. 115, pp. 509-518.
[8] Rodrigues, M.P.M.C., Costa, M.R.N., Mendes, A.M., Eusebio Marques, M.I. (2000). "Effectiveness of surface coatings to protect reinforced concrete in marine environments."
Materials and Structures (Springer), Vol. 33, pp. 618-626.
[9] Ehlen, M.A. (2012). "Life-365™ Service Life Prediction Model™ and computer program for predicting the service life and life-cycle cost of reinforced concrete exposed to chlorides." Manual of Life-365™ Version 2.1, Produced by the Life-365™ Consortium II.
[10] Ferreira, R.M. (2010). "Optimization of RC structure performance in marine environment." Engineering Structures, Vol. 32, pp. 1489-1494.
[11] Saetta, A.V., Scotta, R.V., Vitaliani, R.V. (1993). "Analysis of chloride diffusion into partially saturated concrete." ACI Materials Journal (ACI), Vol. 90, pp. 441-451.
[13] Ann, K.Y., Ahn, J.H., Ryou, J.S. (2009). "The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures." Construction and Building Materials (Elsevier), Vol. 23, pp. 239-245.
[14] Costa, A., Appleton, J. (1999b). "Chloride penetration into concrete in marine environment; Part II: Prediction of long term chloride penetration." Materials and Structures, Vol. 32, pp. 354-359.
[15] Liu, T., Weyers, R.W. (1998b). "Modeling the dynamic corrosion process in chloride contaminated concrete structures." Cement and Concrete Research (Elsevier), Vol. 28, pp. 365-379.
[16] Alonso, C., Andrade, C., Gonzalez, J. (1988). "Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types." Cement and Concrete Research (Elsevier), Vol. 8, pp. 687-698.
[17] Kong, Q., Gong, G., Yang, J., Song, X. (2006). "The corrosion rate of reinforcement in chloride contaminated concrete." Low Temperature Architecture Technology, Vol. 111, pp. 1-2.
[18] Vu, K.A.T., Stewart, M.G. (2000). "Structural reliability of concrete bridges including improved chloride-induced corrosion models."
Structural Safety (Elsevier), Vol. 22, pp. 313-333.
[19] Choe D., Gardoni P., Rosowsky D., Haukaas T. (2008). "Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion." Reliab Eng Syst Safe, Vol. 93, pp. 383-393.
[21] Afsar Dizaj, E., Madandoust, R., Kashani, M.M. (2018). "Exploring the impact of chloride-induced corrosion on seismic damage limit states and residual capacity of RC structures." Structure and Infrastructure Engineering (Taylor and Francis), Vol. 14, pp. 714-729.
[22] Berry, M.P., and Eberhard, M.O. (2006). "Performance modeling strategies for modern reinforced concrete bridge columns." Pacific Earthquake Engineering Research Center, University of California, Berkeley.
[23] Farahani, A. (2014). "Performance evaluation of numerical models for study of chloride ion diffusion in concrete structures in Persian Gulf." M.Sc. Thesis, University of Tehran, School of Civil Engineering, Tehran, Iran, 154 pp.
[24] Farahani, A., Taghaddos, H., Shekarchi, M. (2015). "Prediction of long-term chloride diffusion in silica fume concrete in a marine environment." Cement and Concrete Composites (Elsevier), Vol. 59, pp. 10-17.
[25] Luping, T. (1996). "Chloride Transport in Concrete, Measurement and Prediction." Ph.D. Dissertation, Chalmers University of Technology, Department of Building Materials, Goteborg, Sweden, 104 pp.
[26] Vidal, T., Castel, A., Francois, R. (2004). "Analyzing crack width to predict corrosion in reinforced concrete." Cement and Concrete Research (Elsevier), Vol. 34, pp. 165-174.
[27] Liu, Y., and Weyers, R.E. (1998a). "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures." ACI Materials Journal (ACI), Vol. 95, pp. 675-681.