[1] Abbaspour, A., Dalir, A.H., Farsadizadeh, D. and Sadraddini, A.A., 2009. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. Journal of Hydro-environment Research, 3(2), pp.109-117.
[2] Abonyi, J., Andersen, H., Nagy, L. and Szeifert, F., 1999. Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1), pp.119-132.
[3] Afzal, N., Bushra, A. and Seena, A., 2011. Analysis of turbulent hydraulic jump over a transitional rough bed of a rectangular channel: universal relations. Journal of Engineering Mechanics, 137(12), pp.835-845.
[4] Ansari, M.A., 2014. Sediment removal efficiency computation in vortex settling chamber using artificial neural networks. Water and Energy International, 71(1), pp.54-67.
[5] Ansari, M.A. and Athar, M., 2013. Artificial neural networks approach for estimation of sediment removal efficiency of vortex settling basins. ISH Journal of Hydraulic Engineering, 19(1), pp.38-48.
[6] Araghinejad, S., 2013. Data-driven modeling: using MATLAB® in water resources and environmental engineering (Vol. 67). Springer Science & Business Media.
[7] Azmathullah, H.M., Deo, M.C. and Deolalikar, P.B., 2005. Neural networks for estimation of scour downstream of a ski-jump bucket. Journal of Hydraulic Engineering, 131(10), pp.898-908.
[8] Barahmand, N. and Shamsai, A., 2010. Experimental and theoretical study of density jumps on smooth and rough beds. Lakes & Reservoirs: Research & Management, 15(4), pp.285-306.
[9] Brown, M. and Harris, C.J., 1994. Neurofuzzy adaptive modelling and control. Prentice Hall.
[10] Carollo F.G., Ferro V., 2004. “Determination of Conjugated Heights Emphasis on Free Smooth Surface and Rough”, Journal of Agricultural Engineering, Vol. 4, pp. 1-12.
[11] Carollo, F.G., Ferro, V. and Pampalone, V., 2007. Hydraulic jumps on rough beds. Journal of Hydraulic Engineering, 133(9), pp.989-999.
[12] Dey, S. and Sarkar, A., 2008. Characteristics of turbulent flow in submerged jumps on rough beds. Journal of engineering mechanics, 134(1), pp.49-59.
[13] Ead, S.A. and Rajaratnam, N., 2002. Hydraulic jumps on corrugated beds. Journal of Hydraulic Engineering, 128(7), pp.656-663.
[14] Ferreira, C., 2001. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13 (2): 87-129.
[15] Ferreira, C., 2006. Gene expression programming: mathematical modeling by an artificial intelligence (Vol. 21). Springer.
[16] Gumus, V., Simsek, O., Soydan, N.G., Akoz, M.S. and Kirkgoz, M.S., 2015. Numerical modeling of submerged hydraulic jump from a sluice gate. Journal of Irrigation and Drainage Engineering, 142(1), p.04015037.
[17] Hager, W.H., 2013. Energy dissipators and hydraulic jump (Vol. 8). Springer Science & Business Media.
[18] Hager, W.H., Bremen, R. and Kawagoshi, N., 1990. Classical hydraulic jump: length of roller. Journal of Hydraulic Research, 28(5), pp.591-608.
[19] Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Printice-Hall. Inc., New Jersey.
[20] Hughes, W.C. and Flack, J.E., 1984. Hydraulic jump properties over a rough bed. Journal of Hydraulic engineering, 110(12), pp.1755-1771.
[21] Jang, J.S., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), pp.665-685.
[22] Jang, J. S. R., & Sun, C. T. (1997). Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River.
[23] Liriano, S.L. and Day, R.A., 2001. Prediction of scour depth at culvert outlets using neural networks. Journal of hydroinformatics, 3(4), pp.231-238.
[24] Mohamed Ali, H.S., 1991. Effect of roughened-bed stilling basin on length of rectangular hydraulic jump. Journal of Hydraulic Engineering, 117(1), pp.83-93.
[25] Naderpour, H., Kheyroddin A., Ghodrati Amiri, G. (2010). Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, Vol. 92, pp. 2817–2829.
[26] Nagy, H.M., Watanabe, K.A.N.D. and Hirano, M., 2002. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering, 128(6), pp.588-595.
[27] Naseri, M. and Othman, F., 2012. Determination of the length of hydraulic jumps using artificial neural networks. Advances in Engineering Software, 48, pp.27-31.
[28] Omid, M.H., Omid, M. and Esmaeeli Varaki, M., 2005, June. Modelling hydraulic jumps with artificial neural networks. In Proceedings of the Institution of Civil Engineers-Water Management (Vol. 158, No. 2, pp. 65-70). Thomas Telford Ltd.
[29] Pagliara, S., Lotti, I. and Palermo, M., 2008. Hydraulic jump on rough bed of stream rehabilitation structures. Journal of Hydro-Environment Research, 2(1), pp.29-38.
[30] Pagliara, S. and Palermo, M., 2015. Hydraulic jumps on rough and smooth beds: aggregate approach for horizontal and adverse-sloped beds. Journal of Hydraulic Research, 53(2), pp.243-252.
[31] Raikar, R.V., Kumar, D.N. and Dey, S., 2004. End depth computation in inverted semicircular channels using ANNs. Flow Measurement and Instrumentation, 15(5), pp.285-293.
[32] Rajaratnam, N., 1965. Submerged hydraulic jump. Journal of the Hydraulics Division, 91(4), pp.71-96.