[1] Tan KH, Murugappan K, Paramasivam P. (1992), “Shear behavior of steel fiber reinforced concrete beams.” ACI Struct J, Vol. 89, Issue 6, pp. 3–11.
[2] Al-Ta’an, S. A., Al-Feel, J. R. (1990). “Evaluation of shear strength of fibre-reinforced concrete beams.” Cem Concr Compos, Vol. 12, Issue 2, pp. 87–94.
[3] Lim, T. Y., Paramasivam, P., Lee, S. L. (1987). “Shear and moment capacity of reinforced steel-fiber-concrete beams.” Mag Conc Res, Vol. 39, Issue 140, pp. 148–160.
[4] Naderpour, H., Alavi, S. A. (2017). “A proposed model to estimate shear contribution of FRP in strengthened RC beams in terms of Adaptive Neuro-Fuzzy Inference System.” Composite Structures, Vol. 170, pp. 215-227.
[5] Ilkhani, M., Moradi, E., Lavasani, M. (2017). “Calculation of Torsion Capacity of the Reinforced Concrete Beams Using Artificial Neural Network.” Soft Computing in Civil Engineering, Vol. 1, Issue 2, pp. 8-18.
[6] Hosseini, G. (2017). “Capacity Prediction of RC Beams Strengthened with FRP by Artificial Neural Networks Based on Genetic Algorithm.” Soft Computing in Civil Engineering, Vol. 1, Issue 1, pp. 93-98.
[7] Mansur, M. A., Ong, K. C. G., Paramasivam, P. (1986). “Shear strength of fibrous concrete beams without stirrups.” J Struct Eng ASCE, Vol. 112, Issue 9, pp. 2066–2079.
[8] Naderpour, H., Noormohammadi, E., Fakharian, P. (2017). “Prediction of Punching Shear Capacity of RC Slabs using Support Vector Machine.” Concrete Research, Vol. 10, Issue 2, pp. 95-107.
[9] Naderpour, H., Fakharian, P. (2017). “Predicting the Torsional Strength of Reinforced Concrete Beams Strengthened with FRP Sheets in terms of Artificial Neural Networks.” Journal of Structural and Construction Engineering, doi: 10.22065/jsce.2017.70668.1023
[10] Ashour, S. A., Hasanain, G. S., Wafa, F. F. (1992). “Shear behavior of high strength fiber reinforced concrete beams.” ACI Struct J, Vol. 89, Issue 2, pp. 176–184.
[11] Balazs, G. L., Kovacs, I. (2000). “Flexural behaviour of RC and PC beams with steel fibre.” In: Proceedings of the international workshop on structural application of steel fibre reinforced concrete, Politecncio of Milan, pp 85–92.
[12] Furlan, S., De Hanai, J. B. (1997). “Shear behaviour of fiber reinforced concrete beams.’ Cem Concr Compos, Vol. 19, Issue 4, pp. 359–366.
[13] Dinh, H. H., Parra-Montesinos, G. J., Wight, J. K. (2010). ‘Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement.” ACI Struct J, Vol. 107, Issue 5, pp. 597–606.
[14] Shin, S. W., Oh, J., Ghosh, S. K. (1994). “Shear behavior of laboratory sized high-strength concrete beams reinforced with bars and steel fibers, fiber reinforced concrete developments and innovations, SP 142. American Concrete Institute, Farmington Hills, pp 181–200.
[15] Khuntia, M., Stojadinovic, B., Goel, S. C. (1999). “Shear strength of normal and high strength fiber reinforced concrete beams without stirrups.” ACI Struct J, Vol. 96, Issue 2, pp. 282–289.
[16] Greenough, T., Nehdi, M. (2008). “Shear behavior of fiber-reinforced self-consolidating concrete slender beams.” ACI Mater J, Vol. 105, Issue 5, pp. 468–477.
[17] Imam, M., Vandewalle, L., Mortelmans, F. (1994). “Shear capacity of steel fibre concrete beams.” In: Proceedings of ACI international conference on high-performance-concrete, Singapore, ACISP-149, pp. 227–243.
[18] Adebar, P., Mindess, S., St. Pierre, D., Olund, B. (1997). “Shear tests of fiber concrete beams without stirrups.” ACI Struct J, Vol. 94, Issue 1, pp. 68–76.
[19] Kwak, Y. K., Eberhard, M. O., Kim, W. S., Kim, J. (2002). “Shear strength of steel-fibre-reinforced-concrete beams without stirrups.” ACI Struct J, Vol. 99, Issue 4, pp. 530–538.
[20] Batson, G., Jenkins, E., Spatney, R. (1972). “Steel fibers as shear reinforcement in beams.” ACI J Proc, Vol. 69, Issue 10, pp. 640–4.
[21] Cucchiara, C., Mendola, L. L., Papia, M. (2004). “Effectiveness of stirrups and steel fibers as shear reinforcement.” Cem Concr Comp, Vol. 26, pp. 777–786.
[22] Adhikary, B. B., Mutsuyoshi, H. (2006). “Prediction of shear strength of steel fiber RC beams using neural networks.” Constr Build Mater, Vol. 20, Issue 2, pp. 801–811.
[23] Cho, S., Kim, Y. (2003). “Effects of steel fibers on short beams loaded in shear.” ACI Struct J, Vol. 100, Issue 6, pp. 765–74.
[24] Sharma, A. K. (1986). “Shear strength of steel-fibre-reinforced-concrete beams.” ACI Struct J, Vol. 83, Issue 4, pp. 624–628.
[25] Rosenbusch, J., Teutsch, M. (2003). “Shear design with ( - ) method. In: Proceedings of the international RILEM workshop on test and design methods for steel fiber reinforced concrete.” Bochum: RILEM Publications SARL; pp. 105–17.
[26] Hockenberry, T. and Lopez, M. M. (2012). “Performance of fiber reinforced concrete beams with and without stirrups.” J Civil, Environmental and Architectural Engineering, Vol. 4, Issue 1, pp. 1–11.
[27] Hwang, J., Lee, D., Kim, K., Ju, H., Seo, S. (2013). “Evaluation of shear performance of steel fibre reinforced concrete beams using a modified smeared-truss model.” Magazine of Concrete Research, Vol. 65, Issue 5, pp. 283–296.
[28] Fatih, K. I. (2013). “Empirical modeling of shear strength of steel fiber reinforcedconcrete beams by gene expression programming.” Neural Comput & Applic, Vol. 23, pp. 823–834.
[29] Gandomi, A. H., Alavi, A. H., Yun, G. J. (2011). “Nonlinear modeling of shear strength of SFRC beams using linear genetic programming.” Structural Engineering and Mechanics, Vol. 38, Issue 1, pp. 1–25.
[30] Swamy, R. N., Jones, R., Chiam, A. T. P. (1993). “Influence of steel fibers on the shear resistance of lightweight concrete I-beams.” ACI Struct J, Vol. 90, Issue 1, pp. 103–114.
[31] Campione, G., La Mendola, L., Papia, M. (2006). “Shear strength of steel fiber reinforced concrete beams with stirrups.’ Struct Eng Mech, Vol. 24, Issue 1, pp. 107–136.
[32] Nguyen-Minh, L., Marian, R. (2010). “New formula for the estimation of shear resistance of fibre reinforced beams.’ Can J Civ Eng, Vol. 38, pp. 23–35.
[33] Slater, E., Moni, M., Alam, M. S. (2011). “Predicting the shear strength of steel fiber reinforced concrete beams.” Constr Build Mater. doi: 10.1016/j.conbuildmat.2011.06.042
[34] ACI Committee 544.4R-88 (1988). “Design considerations for steel fiber reinforced concrete.” American Concrete Inst, pp. 1–18 (reapproved in 1999).
[35] Cybenko, J. (1989). “Approximations by super positions of a sigmoidal function.” Math Control Signal Syst, Vol. 2, pp. 303–314.
[36] Marquardt, D. (1963). “An algorithm for least squares estimation of non-linear parameters.” J Soc Ind Appl Math, Vol. 11, pp. 431–41.
[37] Hagan, M. T., Menhaj, M. B. (1994). “Training feed forward networks with the Marquardt algorithm.” IEEE Transactions on Neural Networks, Vol. 5, Issue 6, pp. 861-867.
[38] Khademi, F., Jamal, S. M., Deshpande, N., & Londhe, S. (2016). Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. International Journal of Sustainable Built Environment, 5, Issue 2, pp. 355-369.
[39] Khademi, F., & Behfarnia, K. (2016). Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models. Iran University of Science & Technology, 6, Issue 3, pp. 423-432.
[40] Gandomi, A. H., Tabatabaei, S. M., Moradian, M. H., Radfar, A., Alavi, A. H. (2011). “A New Prediction Model for the Load Capacity of Castellated Steel Beams.” Journal of Constructional Steel Research, Vol. 67, pp. 1096-1105.
[41] Gandomi, A. H., Mohammadzadeh, S., Juan Luis Pérez-Ordó˜nezc, Alavi, A. H. (2014). “Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups.” Applied Soft Computing, Vol. 19, pp. 112–120.