[1] Bagci, C. (1980). Elastic stability and buckling loads of multi-span nonuniform beams, shafts and frames on rigid or elastic supports by finite element method using planar uniform line elements. Computers & Structures, 12(2), 233-243.
[2] Melaibari, A., Abo-bakr, R. M., Mohamed, S. A., & Eltaher, M. A. (2020). Static stability of higher order functionally graded beam under variable axial load. Alexandria Engineering Journal, 59(3), 1661-1675.
[3] Lee, S. L., Manuel, F. S., & Rossow, E. C. (1968). Large deflections and stability of elastic frame. Journal of the Engineering Mechanics Division, 94(2), 521-548.
[4] Rutenberg, A. (1981). A direct P-delta analysis using standard plane frame computer programs. Computers & Structures, 14(1-2), 97-102.
[5] Wilson, E. L., & Habibullah, A. (1987). Static and dynamic analysis of multi-story buildings, including P-delta effects. Earthquake spectra, 3(2), 289-298.
[6] Bolotin, V. V. (1962). THE DYNAMIC STABILITY OF ELASTIC SYSTEMS. VOLUME 2. AEROSPACE CORP EL SEGUNDO CA.
[7] Zingone, G., & Muscolino, G. (1982). Dynamic stability of plane elastic frames. Journal of Sound and Vibration, 85(3), 397-406.
[8] Nayak, B., Dwivedy, S. K., & Murthy, K. S. R. K. (2014). Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core. European Journal of Mechanics-A/Solids, 47, 143-155.
[9] Şakar, G., Öztürk, H., & Sabuncu, M. (2012). Dynamic stability of multi-span frames subjected to periodic loading. Journal of Constructional Steel Research, 70, 65-70.
[10] Aydınoğlu, M. N., & Fahjan, Y. M. (2003). A unified formulation of the piecewise exact method for inelastic seismic demand analysis including the P‐delta effect. Earthquake engineering & structural dynamics, 32(6), 871-890.
[11] López, S. E., Ayala, A. G., & Adam, C. (2015). A novel displacement-based seismic design method for framed structures considering P-Delta induced dynamic instability. Bulletin of Earthquake Engineering, 13(4), 1227-1247.
[12] Chen, W. K. (2018). Stability design of steel frames. CRC press.
[13] Nayfeh, A. H., & Balachandran, B. (1989). Modal interactions in dynamical and structural systems.
[14] Afaneh, A. A., & Ibrahim, R. A. (1993). Nonlinear response of an initially buckled beam with 1: 1 internal resonance to sinusoidal excitation. Nonlinear Dynamics, 4(6), 547-571.
[15] Särkkä, S., & Solin, A. (2019). Applied stochastic differential equations (Vol. 10). Cambridge University Press.
[16] Solomos, G. P., & Spanos, P. D. (1984). Oscillator response to nonstationary excitation.
[17] Kiureghian, A. D. (1981). A response spectrum method for random vibration analysis of MDF systems. Earthquake Engineering & Structural Dynamics, 9(5), 419-435.
[18] Heredia-Zavoni, E., & Vanmarcke, E. H. (1994). Seismic random-vibration analysis of multisupport-structural systems. Journal of Engineering Mechanics, 120(5), 1107-1128.
[19] Patil, A. E., & Bhanuse, M. M. (2020). Seismic Analysis of Eccentric Steel Structure on a Shaking Table. Computational Engineering and Physical Modeling, 3(2), 1-11. https://doi.org/10.22115/cepm.2020.223528.1093
[20] Bakhshi, H., Khosravi, H., & Ghoddusi, M. (2019). Evaluation of seismic behavior of steel shear wall by time history analysis. Computational Engineering and Physical Modeling, 2(1), 38-55. https://doi.org/10.22115/cepm.2019.160278.1055
[21] Kiyani, K., Raeisi, J., & Heidari, A. (2019). Time-frequency localization of earthquake record by continuous wavelet transforms. Computational Engineering and Physical Modeling, 2(2), 49-61. https://doi.org/10.22115/cepm.2019.193015.1065
[22] Haddad, A., Eidgahee, D. R., & Naderpour, H. (2017). A probabilistic study on the geometrical design of gravity retaining walls. World Journal of Engineering. https://doi.org/10.1108/WJE-07-2016-0034
[23] Shishegaran, A., Taghavizade, H., Bigdeli, A., & Shishegaran, A. (2019). Predicting the Earthquake Magnitude along Zagros Fault Using Time Series and Ensemble Model. Journal of Soft Computing in Civil Engineering, 3(4), 67-77. https://doi.org/10.22115/scce.2020.213197.1152
[24] Ghasemi, S. H., Bahrami, H., & Akbari, M. (2020). Classification of seismic vulnerability based on machine learning techniques for RC frames. Journal of Soft Computing in Civil Engineering, 4(2), 13-21. https://doi.org/10.22115/scce.2020.223322.1186
[25] Nayfeh, A. H. (2008). Perturbation methods. John Wiley & Sons.