[1] P. K. and M. P. Mehta, Concrete Microstructure, Properties and Materials, Third. Mc Graww Hill.
[2] ASTM C 1202: Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride. 2005.
[3] “NT BUILD 492 Concrete, Mortar And Cement-Based Repair Materials: Chloride Migration Coefficient From Non-Steady - State Migration Experiments,” 1999.
[4] M. C. G. Juenger and R. Siddique, “Recent advances in understanding the role of supplementary cementitious materials in concrete,” Cement and Concrete Research, vol. 78. Elsevier Ltd, pp. 71–80, Dec. 01, 2015, doi: 10.1016/j.cemconres.2015.03.018.
[5] S. Sui, F. Georget, H. Maraghechi, W. Sun, and K. Scrivener, “Towards a generic approach to durability: Factors affecting chloride transport in binary and ternary cementitious materials,” Cem. Concr. Res., vol. 124, no. June, p. 105783, 2019, doi: 10.1016/j.cemconres.2019.105783.
[6] C. C. Yang, S. C. Chiang, and L. C. Wang, “Estimation of the chloride diffusion from migration test using electrical current,” Constr. Build. Mater., vol. 21, no. 7, pp. 1560–1567, 2007, doi: 10.1016/j.conbuildmat.2005.10.002.
[7] A. R. Bagheri and H. Zanganeh, “Comparison of Rapid Tests for Evaluation of Chloride Resistance of Concretes with Supplementary Cementitious Materials,” J. Mater. Civ. Eng., vol. 24, no. 9, pp. 1175–1182, 2012, doi: 10.1061/(ASCE)mt.1943-5533.0000485.
[8] O. Sengul and M. A. Tasdemir, “Compressive Strength and Rapid Chloride Permeability of Concretes with Ground Fly Ash and Slag,” 2009, doi: 10.1061/ASCE0899-1561200921:9494.
[9] A. Farahani and H. Taghaddos, “Prediction of service life in concrete structures based on diffusion model in a marine environment using mesh free, FEM and FDM approaches,” J. Rehabil. Civ. Eng., vol. 8, no. 4, pp. 01–14, 2020, doi: 10.22075/JRCE.2020.19189.1380.
[10] E. Meck and V. Sirivivatnanon, “Field indicator of chloride penetration depth,” Cem. Concr. Res., vol. 33, no. 8, pp. 1113–1117, Aug. 2003, doi: 10.1016/S0008-8846(03)00012-7.
[11] N. Neithalath and J. Jain, “Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance,” Cem. Concr. Res., vol. 40, no. 7, pp. 1041–1051, 2010, doi: 10.1016/j.cemconres.2010.02.016.
[12] R. Cherif, A. E. A. Hamami, and A. Aït-Mokhtar, “Global quantitative monitoring of the ion exchange balance in a chloride migration test on cementitious materials with mineral additions,” Cem. Concr. Res., vol. 138, Dec. 2020, doi: 10.1016/j.cemconres.2020.106240.
[13] K. S. Huang and C. C. Yang, “Using RCPT determine the migration coefficient to assess the durability of concrete,” Constr. Build. Mater., vol. 167, pp. 822–830, Apr. 2018, doi: 10.1016/j.conbuildmat.2018.02.109.
[14] H. Pourahmadi Sefat Arabani, A. SadrMomtazi, M. A. Mirgozar Langaroudi, R. Kohani Khoshkbijari, and M. Amooie, “Durability of Self-compacting Lightweight Aggregate Concretes (LWSCC) as Repair Overlays,” J. Rehabil. Civ. Eng., vol. 5, no. 2, pp. 96–108, 2017, doi: 10.22075/jrce.2017.11415.1187.
[15] J. J. O. Andrade, E. Possan, and D. C. C. Dal Molin, “Considerations about the service life prediction of reinforced concrete structures inserted in chloride environments,” J. Build. Pathol. Rehabil., vol. 2, no. 1, Dec. 2017, doi: 10.1007/s41024-017-0025-x.
[16] S. Jun, U. Jin, S. Soon, and S. Hwa, “Service life prediction of concrete wharves with early-aged crack : Probabilistic approach for chloride diffusion,” Struct. Saf., vol. 31, no. 1, pp. 75–83, 2009, doi: 10.1016/j.strusafe.2008.03.004.
[17] E. C. Bentz, “Probabilistic Modeling of Service Life for Structures Subjected to Chlorides,” no. 100, pp. 391–397, 2003.
[18] M. Nemati, M. Shekarchi, M. Hosein, and M. Moradian, “Prediction of chloride ingress into blended cement concrete : Evaluation of a combined short-term laboratory-numerical procedure,” Constr. Build. Mater., vol. 162, pp. 649–662, 2018, doi: 10.1016/j.conbuildmat.2017.12.064.
[19] M. Shafikhani and S. E. Chidiac, “Quantification of concrete chloride diffusion coefficient – A critical review,” Cem. Concr. Compos., vol. 99, no. March, pp. 225–250, 2019, doi: 10.1016/j.cemconcomp.2019.03.011.
[20] U. M. Angst, “Predicting the time to corrosion initiation in reinforced concrete structures exposed to chlorides,” Cem. Concr. Res., vol. 115, no. March 2018, pp. 559–567, 2019, doi: 10.1016/j.cemconres.2018.08.007.
[21] J. Marchand and E. Samson, “Predicting the service-life of concrete structures – Limitations of simplified models,” Cem. Concr. Compos., vol. 31, no. 8, pp. 515–521, 2009, doi: 10.1016/j.cemconcomp.2009.01.007.
[22] IS:12269, Indian Standard for Ordinary Portland Cement, 53 GRADE — Specification. Bureau of Indian Standard, New Delhi, 2013.
[23] Indian and Indian Standards, IS 383 (1970): Specification for Coarse and Fine Aggregates From Natural Sources For Concrete [CED. 1970.
[24] IS 3812-1 (2013): Specification for Pulverized Fuel Ash, Part 1: For Use as Pozzolana in Cement, Cement Mortar and Concrete [CED. 2013.
[25] I. 12089, Indian Standards. 1987.
[26] IS-1727, “IS 17127- Method of test for pozzolanic materials,” Bur. Indian Stand. New Delhi, 1967.
[27] Indian Standards and I. Standards, IS 10262 (2009): Guidelines for concrete mix design proportioning [CED. 2009.
[28] IS 516, Indian Standard for Methods Of Tests For Strength Of Concrete. 2004.
[29] B. M. A Ehlen, M. D. a Thomas, and E. C. Bentz, “Life-365 Service Life Prediction Model TM,” Concr. Int., no. may, pp. 41–46, 2009.