[1] F. Canestrari, L.P. Ingrassia, A review of top-down cracking in asphalt pavements: Causes, models, experimental tools and future challenges, J. Traffic Transp. Eng. (English Ed. 7 (2020) 541–572.
[2] S. Deilami, G. White, Review of reflective cracking in composite pavements, Int. J. Pavement Res. Technol. 13 (2020) 524–535.
[3] S. Suresh, Fatigue of materials, Cambridge university press, 1998.
[4] S. Lv, C. Xia, C. Liu, J. Zheng, F. Zhang, Fatigue equation for asphalt mixture under low temperature and low loading frequency conditions, Constr. Build. Mater. 211 (2019) 1085–1093.
[5] W. Van Dijk, W. Visser, Energy approach to fatigue for pavement design, in: Assoc. Asph. Paving Technol. Proc, 1977.
[6] Y.-R. Kim, D.N. Little, R.L. Lytton, Fatigue and healing characterization of asphalt mixtures, J. Mater. Civ. Eng. 15 (2003) 75–83.
[7] R.L. Lytton, Use of geotextiles for reinforcement and strain relief in asphalt concrete, Geotext. Geomembranes. 8 (1989) 217–237.
[8] A. Khodaii, S. Fallah, F.M. Nejad, Effects of geosynthetics on reduction of reflection cracking in asphalt overlays, Geotext. Geomembranes. 27 (2009) 1–8.
[9] T.O. Medani, A.A.A. Molenaar, Estimation of fatique characteristics of asphaltic mixes using simple tests, HERON-ENGLISH Ed. 45 (2000) 155–166.
[10] S. Shen, S. Carpenter, Development of an asphalt fatigue model based on energy principles, Asph. Paving Technol. 76 (2007) 525.
[11] A. Chowdhury, J. Button, Evaluation of FiberMat® Type B as a Stress Absorbing Membrane, Texas Transp. Institute, Texas A&M Univ. Coll. Station. Texas. (2007).
[12] S. Saride, V.V. Kumar, Influence of geosynthetic-interlayers on the performance of asphalt overlays on pre-cracked pavements, Geotext. Geomembranes. 45 (2017) 184–196.
[13] S. Selvaraj, R. Karpurapu, Numerical Analysis of Leutner Shear Tests on Interface Between Geosynthetic and Asphalt Layers, Int. J. Geosynth. Gr. Eng. 7 (2021) 1–18.
[14] A. Vanelstraete, L. Francken, Numerical modelling of crack initiation under thermal stresses and traffic loads, in: REFLECTIVE Crack. PAVEMENTS. STATE ART Des. Recomm. Proc. Second (MARCH 10-12, 1993) Int. RILEM Conf. LIEGE, BELGIUM, 1993.
[15] F. Moghadas Nejad, A. Noory, S. Toolabi, S. Fallah, Effect of using geosynthetics on reflective crack prevention, Int. J. Pavement Eng. 16 (2015) 477–487.
[16] E. Pasquini, M. Bocci, F. Canestrari, Laboratory characterisation of optimised geocomposites for asphalt pavement reinforcement, Geosynth. Int. 21 (2014) 24–36.
[17] K. Sobhan, V. Tandon, Mitigating reflection cracking in asphalt overlays using geosynthetic reinforcements, Road Mater. Pavement Des. 9 (2008) 367–387.
[18] L.P. Ingrassia, A. Virgili, F. Canestrari, Effect of geocomposite reinforcement on the performance of thin asphalt pavements: Accelerated pavement testing and laboratory analysis, Case Stud. Constr. Mater. 12 (2020) e00342.
[19] F.M. Nejad, S. Asadi, S. Fallah, M. Vadood, Statistical-experimental study of geosynthetics performance on reflection cracking phenomenon, Geotext. Geomembranes. 44 (2016) 178–187.
[20] G. Ferrotti, F. Canestrari, E. Pasquini, A. Virgili, Experimental evaluation of the influence of surface coating on fiberglass geogrid performance in asphalt pavements, Geotext. Geomembranes. 34 (2012) 11–18.
[21] F.P. Jaecklin, J. Scherer, Asphalt reinforcing using glass fibre grid" Glasphalt", in: Int. RILEM Conf. Reflective Crack. Pavements, 3rd, 1996, Maastricht, Netherlands, 1996.
[22] P. Jaskula, D. Rys, M. Stienss, C. Szydlowski, M. Golos, J. Kawalec, Fatigue performance of double-layered asphalt concrete beams reinforced with new type of geocomposites, Materials (Basel). 14 (2021) 2190.
[23] A. Noory, F. Moghadas Nejad, A. Khodaii, Evaluation of the effective parameters on shear resistance of interface in a geocomposite-reinforced pavement, Int. J. Pavement Eng. 20 (2019) 1106–1117.
[24] S. Fallah, A. Khodaii, Reinforcing overlay to reduce reflection cracking; an experimental investigation, Geotext. Geomembranes. 43 (2015) 216–227.
[25] M.-L. Nguyen, J. Blanc, J.-P. Kerzrého, P. Hornych, Review of glass fibre grid use for pavement reinforcement and APT experiments at IFSTTAR, Road Mater. Pavement Des. 14 (2013) 287–308.
[26] D. Zamora-Barraza, M.A. Calzada-Pérez, D. Castro-Fresno, A. Vega-Zamanillo, Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone, Geotext. Geomembranes. 29 (2011) 130–136.
[27] G. Shafabakhsh, S. Asadi, Investigating the effect of AC overlays reinforced with geogrid and modified by sasobit on rehabilitation of reflective cracking, J. Rehabil. Civ. Eng. 8 (2020) 133–148.
[28] O.M. Ogundipe, N. Thom, A. Collop, Investigation of crack resistance potential of stress absorbing membrane interlayers (SAMIs) under traffic loading, Constr. Build. Mater. 38 (2013) 658–666.
[29] D.C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017.
[30] A. Dean, D. Voss, D. Draguljić, Response surface methodology, in: Des. Anal. Exp., Springer, 2017: pp. 565–614.
[31] M.Y. Can, Y. Kaya, O.F. Algur, Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris, Bioresour. Technol. 97 (2006) 1761–1765.
[32] A.I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev. Comput. Stat. 2 (2010) 128–149.
[33] A.C. Atkinson, A.N. Donev, Optimum experimental designs, Clarendon Press, 1992.