[1] Amran M, Huang SS, Debbarma S, Rashid RSM. Fire resistance of geopolymer concrete: A critical review. Constr Build Mater 2022;324:126722. https://doi.org/10.1016/J.CONBUILDMAT.2022.126722.
[2] Phoo-Ngernkham T, Sata V, Hanjitsuwan S, Ridtirud C, Hatanaka S, Chindaprasirt P. High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Constr Build Mater 2015;98:482–8. https://doi.org/10.1016/J.CONBUILDMAT.2015.08.139.
[3] Jumaa NH, Ali IM, Nasr MS, Falah MW. Strength and microstructural properties of binary and ternary blends in fly ash-based geopolymer concrete. Case Stud Constr Mater 2022;17:e01317. https://doi.org/10.1016/J.CSCM.2022.E01317.
[4] Prasad Burle V, Kiran T, Anand N, Andrushia D, Al-Jabri K. Post-fire investigation on the mechanical properties and physical characteristics of fibre-reinforced geopolymer concrete. J Struct Fire Eng 2023;ahead-of-print. https://doi.org/10.1108/JSFE-01-2023-0016/FULL/XML.
[5] Sasi Rekha M, Sumathy SR. Engineering properties of Self-cured Geopolymer concrete binded with supplementary cementitious materials. Mater Today Proc 2022;69:879–87. https://doi.org/10.1016/J.MATPR.2022.07.357.
[6] Huang Y, Han M, Yi R. Microstructure and properties of fly ash-based geopolymeric material with 5A zeolite as a filler. Constr Build Mater 2012;33:84–9. https://doi.org/10.1016/J.CONBUILDMAT.2012.01.014.
[7] Albidah A, Alqarni AS, Abbas H, Almusallam T, Al-Salloum Y. Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater 2022;317:125910. https://doi.org/10.1016/J.CONBUILDMAT.2021.125910.
[8] Moradikhou AB, Esparham A, Jamshidi Avanaki M. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr Build Mater 2020;251:118965. https://doi.org/10.1016/J.CONBUILDMAT.2020.118965.
[9] Kaya M, Koksal F, Gencel O, Munir MJ, Kazmi SMS. Influence of micro Fe2O3 and MgO on the physical and mechanical properties of the zeolite and kaolin based geopolymer mortar. J Build Eng 2022;52:104443. https://doi.org/10.1016/J.JOBE.2022.104443.
[10] Gülşan ME, Alzeebaree R, Rasheed AA, Niş A, Kurtoğlu AE. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr Build Mater 2019;211:271–83. https://doi.org/10.1016/J.CONBUILDMAT.2019.03.228.
[11] Deb PS, Nath P, Sarker PK. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 2014;62:32–9. https://doi.org/10.1016/J.MATDES.2014.05.001.
[12] Okoye FN, Durgaprasad J, Singh NB. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceram Int 2016;42:3000–6. https://doi.org/10.1016/J.CERAMINT.2015.10.084.
[13] Luhar S, Chaudhary S, Luhar I. Development of rubberized geopolymer concrete: Strength and durability studies. Constr Build Mater 2019;204:740–53. https://doi.org/10.1016/J.CONBUILDMAT.2019.01.185.
[14] Park Y, Abolmaali A, Kim YH, Ghahremannejad M. Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. Constr Build Mater 2016;118:43–51. https://doi.org/10.1016/J.CONBUILDMAT.2016.05.001.
[15] Aly AM, El-Feky MS, Kohail M, Nasr ESAR. Performance of geopolymer concrete containing recycled rubber. Constr Build Mater 2019;207:136–44. https://doi.org/10.1016/J.CONBUILDMAT.2019.02.121.
[16] Albitar M, Mohamed Ali MS, Visintin P, Drechsler M. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr Build Mater 2015;83:128–35. https://doi.org/10.1016/J.CONBUILDMAT.2015.03.009.
[17] Muttashar HL, Ariffin MAM, Hussein MN, Hussin MW, Ishaq S Bin. Self-compacting geopolymer concrete with spend garnet as sand replacement. J Build Eng 2018;15:85–94. https://doi.org/10.1016/J.JOBE.2017.10.007.
[18] Albidah A, Alghannam M, Abbas H, Almusallam T, Al-Salloum Y. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J Mater Res Technol 2021;10:84–98. https://doi.org/10.1016/J.JMRT.2020.11.104.
[19] Pothisiri T, Panedpojaman P. Modeling of bonding between steel rebar and concrete at elevated temperatures. Constr Build Mater 2012;27:130–40. https://doi.org/10.1016/J.CONBUILDMAT.2011.08.014.
[20] Yu R, Spiesz P, Brouwers HJH. Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cem Concr Compos 2015;55:383–94. https://doi.org/10.1016/J.CEMCONCOMP.2014.09.024.
[21] Zanotti C, Borges PHR, Bhutta A, Banthia N. Bond strength between concrete substrate and metakaolin geopolymer repair mortar: Effect of curing regime and PVA fiber reinforcement. Cem Concr Compos 2017;80:307–16. https://doi.org/10.1016/J.CEMCONCOMP.2016.12.014.
[22] Dutta S, Mandal JN. Model Studies on Geocell-Reinforced Fly Ash Bed Overlying Soft Clay. J Mater Civ Eng 2015;28:04015091. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001356.
[23] Tanyildizi H, Yonar Y. Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature. Constr Build Mater 2016;126:381–7. https://doi.org/10.1016/J.CONBUILDMAT.2016.09.001.
[24] Ganesh AC, Muthukannan M. Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J Clean Prod 2021;282:124543. https://doi.org/10.1016/J.JCLEPRO.2020.124543.
[25] Vaidya S, Allouche EN. Strain sensing of carbon fiber reinforced geopolymer concrete. Mater Struct Constr 2011;44:1467–75. https://doi.org/10.1617/S11527-011-9711-3/METRICS.
[26] Albidah A, Abadel A, Alrshoudi F, Altheeb A, Abbas H, Al-Salloum Y. Bond strength between concrete substrate and metakaolin geopolymer repair mortars at ambient and elevated temperatures. J Mater Res Technol 2020;9:10732–45. https://doi.org/10.1016/J.JMRT.2020.07.092.
[27] TAHERI AMIRI MJ, Ashrafian A, Haghighi FR, Javaheri Barforooshi M. Prediction of the Compressive Strength of Self-compacting Concrete containing Rice Husk Ash using Data Driven Models. Modares Civ Eng J 2019;19:209–21.
[28] Razeghi HR, Ghadir P, Javadi AA. Mechanical Strength of Saline Sandy Soils Stabilized with Alkali-Activated Cements. Sustain 2022, Vol 14, Page 13669 2022;14:13669. https://doi.org/10.3390/SU142013669.
[29] Ghadir P, Razeghi HR. Effects of sodium chloride on the mechanical strength of alkali activated volcanic ash and slag pastes under room and elevated temperatures. Constr Build Mater 2022;344:128113. https://doi.org/10.1016/J.CONBUILDMAT.2022.128113.
[30] Ashrafian A, Panahi E, Salehi S, Karoglou M, Asteris PG. Mapping the strength of agro-ecological lightweight concrete containing oil palm by-product using artificial intelligence techniques. Structures 2023;48:1209–29. https://doi.org/10.1016/J.ISTRUC.2022.12.108.
[31] Ashrafian A, Shahmansouri AA, Akbarzadeh Bengar H, Behnood A. Post-fire behavior evaluation of concrete mixtures containing natural zeolite using a novel metaheuristic-based machine learning method. Arch Civ Mech Eng 2022;22:101. https://doi.org/10.1007/s43452-022-00415-7.
[32] C618 Standard Specification for Coal Fly Ash and Raw or - Google Scholar n.d.
[33] ASTM C39 / C39M Standard Test Method for Compressive - Google Scholar n.d.
[34] Belalia Douma O, Boukhatem B, Ghrici M, Tagnit-Hamou A. Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Comput Appl 2017;28:707–18. https://doi.org/10.1007/S00521-016-2368-7/METRICS.
[35] Ashrafian A, Taheri Amiri MJ, haghighi farshidreza. Modeling the Slump Flow of Self-Compacting Concrete Incorporating Metakaolin Using Soft Computing Techniques. J Struct Constr Eng 2019;6:5–20. https://doi.org/10.22065/jsce.2018.90214.1243.
[36] An D, Kim NH, Choi JH. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliab Eng Syst Saf 2015;133:223–36. https://doi.org/10.1016/J.RESS.2014.09.014.
[37] Rajaee T, Shahabi A. Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters. Arab J Geosci 2016;9:1–15. https://doi.org/10.1007/S12517-015-2220-X/METRICS.
[38] Komasi M, Goudarzi H, Behniya A. Studying the process of space-time ground water level by support vector machine and Kriging Method in GIS (case study: silakhor plain). J Water Soil Conserv 2017;24:195–209. https://doi.org/10.22069/JWSC.2017.11640.2611.
[39] Barman M, Choudhury NBD, Sutradhar S. A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India. Energy 2018;145:710–20.
[40] Meng E, Huang S, Huang Q, Fang W, Wu L, Wang L. A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. J Hydrol 2019;568:462–78. https://doi.org/10.1016/J.JHYDROL.2018.11.015.
[41] Cortes C, Vapnik V. Support-Vector Networks. Mach Learn 1995;20:273–97. https://doi.org/10.1023/A:1022627411411.
[42] Ashrafian A, Shokri F, Taheri Amiri MJ, Yaseen ZM, Rezaie-Balf M. Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Constr Build Mater 2020;230:117048. https://doi.org/10.1016/J.CONBUILDMAT.2019.117048.
[43] Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 2012;110–111:151–66. https://doi.org/10.1016/J.COMPSTRUC.2012.07.010.
[44] Noparast M, Hematian M, Ashrafian A, Javad M, Amiri T, Azarijafari H. Development of a non-dominated sorting genetic algorithm for implementing circular economy strategies in the concrete industry. Sustain Prod Consum 2021;27:933–46. https://doi.org/10.1016/j.spc.2021.02.009.
[45] Zhang W, Lee D, Lee J, Lee C. Residual strength of concrete subjected to fatigue based on machine learning technique. Struct Concr 2022;23:2274–87. https://doi.org/10.1002/SUCO.202100082.
[46] Asteris PG, Lourenço PB, Hajihassani M, Adami CEN, Lemonis ME, Skentou AD, et al. Soft computing-based models for the prediction of masonry compressive strength. Eng Struct 2021;248:113276. https://doi.org/10.1016/J.ENGSTRUCT.2021.113276.