[1] O. C. Huat. Performance of Concrete Containging Metakaolin As Cement Replacement Material. Chest 2006;25:1–14.
[2] Ahmadi N, Yazdandoust M, Yazdani M. Simultaneous Effect of Aggregate and Cement Matrix on the Performance of High Strength Concrete. J Rehabil Civ Eng 2021;9:26–39. https://doi.org/10.22075/jrce.2021.20803.1431.
[3] Bai J, Sabir BB, Wild S, Kinuthia JM. Strength development in concrete incorporating PFA and metakaolin. Mag Concr Res 2000;52:153–62. https://doi.org/10.1680/macr.2000.52.3.153.
[4] Kim HS, Lee SH, Moon HY. Strength properties and durability aspects of high strength concrete using Korean metakaolin. Constr Build Mater 2007;21:1229–37. https://doi.org/10.1016/j.conbuildmat.2006.05.007.
[5] Ramezanianpour AA, Bahrami Jovein H. Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 2012;30:470–9. https://doi.org/10.1016/j.conbuildmat.2011.12.050.
[6] Wild S, Khatib JM, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res 1996;26:1537–44. https://doi.org/10.1016/0008-8846(96)00148-2.
[7] Sharbatdar MK, Abbasi M, Fakharian P. Improving the Properties of Self-compacted Concrete with Using Combined Silica Fume and Metakaolin. Period Polytech Civ Eng 2020;64:535–44. https://doi.org/10.3311/PPci.11463.
[8] Sharifi Y, Hosseinpour M. Adaptive neuro-fuzzy inference system and stepwise regression for compressive strength assessment of concrete containing metakaolin. Iran Univ Sci Technol 2019;9:251–72.
[9] Sharifi Y, Hosseinpour M. Compressive strength assessment of concrete containing metakaolin using ANN. J Rehabil Civ Eng 2020;8:15–27. https://doi.org/10.22075/JRCE.2020.19043.1358.
[10] Sivakumar VR, Kavitha OR, Prince Arulraj G, Srisanthi VG. An experimental study on combined effects of glass fiber and Metakaolin on the rheological, mechanical, and durability properties of self-compacting concrete. Appl Clay Sci 2017;147:123–7. https://doi.org/10.1016/j.clay.2017.07.015.
[11] Homayoonmehr R, Ramezanianpour AA, Moodi F, Ramezanianpour AM, Gevaudan JP. A Review on the Effect of Metakaolin on the Chloride Binding of Concrete, Mortar, and Paste Specimens. Sustainability 2022;14:15022. https://doi.org/10.3390/su142215022.
[12] Ali AA, Al-Attar TS, Abbas WA. A Statistical Model to Predict the Strength Development of Geopolymer Concrete Based on SiO2/Al2O3 Ratio Variation. Civ Eng J 2022;8:454–71. https://doi.org/10.28991/CEJ-2022-08-03-04.
[13] Naderpour H, Kheyroddin A, Amiri GG. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos Struct 2010;92:2817–29. https://doi.org/10.1016/j.compstruct.2010.04.008.
[14] Wagh CD, Manu SN, Dinakar P. Rheological Properties of Self-Compacting Lightweight Concrete with Metakaolin. RILEM Bookseries, vol. 25, Springer; 2020, p. 237–44. https://doi.org/10.1007/978-981-15-2806-4_27.
[15] Shakiba M, Rahgozar P, Elahi AR, Rahgozar R. Effect of Activated Pozzolan with Ca(OH) 2 and nano-SiO2 on Microstructure and Hydration of High-Volume Natural Pozzolan Paste. Civ Eng J 2018;4:2437. https://doi.org/10.28991/cej-03091171.
[16] Askari Dolatabad Y, Kamgar R, Gouhari Nezad I. Rheological and Mechanical Properties, Acid Resistance and Water Penetrability of Lightweight Self-Compacting Concrete Containing Nano-SiO2, Nano-TiO2 and Nano-Al2O3. Iran J Sci Technol - Trans Civ Eng 2020;44:603–18. https://doi.org/10.1007/s40996-019-00328-1.
[17] Ghafor K, Mahmood W, Qadir W, Mohammed A. Effect of particle size distribution of sand on mechanical properties of cement mortar modified with microsilica. ACI Mater J 2020;117:47–60. https://doi.org/10.14359/51719070.
[18] Pundienė I, Pranckevičienė J. The synergistic effect of adding a blend of deflocculants and microsilica on the properties of high temperature resistant lightweight concrete with cenospheres. Constr Build Mater 2020;230:116961. https://doi.org/10.1016/j.conbuildmat.2019.116961.
[19] Nejati F, Edalatpanah SA. Experimental investigation for the effect of fiber on the mechanical properties of light-weight concrete under dry and wet conditions. Int J Struct Integr 2020;11:216–38. https://doi.org/10.1108/IJSI-04-2019-0036.
[20] Adai Al-Farttoosi HK, Abdulrazzaq OA, Hussain HK. Mechanical Properties of Light Weight Aggregate Concrete Using Pumice as a Coarse Aggregate. IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, IOP Publishing; 2021, p. 012106. https://doi.org/10.1088/1757-899x/1090/1/012106.
[21] Maleki M, Farahpour MA. Experimental Study on the Mechanical Behavior of Sand Grouted with Cement-Based Grout in the Presence of Metakaolin. J Eng Geol 2021;15:149–76.
[22] Kharun M, Ehsani A. Investigation and Comparison of the Effect of Using Leca and Scoria Lightweight Aggregates on the Strength of Lightweight Concrete. AIP Conf. Proc., vol. 2559, AIP Publishing LLC; 2022, p. 50008. https://doi.org/10.1063/5.0099014.
[23] Risdanareni P, Ekaputri JJ, Triwulan. The effect of sintering temperature on the properties of metakaolin artificial lightweight aggregate. AIP Conf Proc 2017;1887:86–92. https://doi.org/10.1063/1.5003528.
[24] Albidah A, Alqarni AS, Abbas H, Almusallam T, Al-Salloum Y. Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater 2022;317:125910. https://doi.org/10.1016/j.conbuildmat.2021.125910.
[25] Demirel B, Gultekin E, Alyamac KE. Performance of Structural Lightweight Concrete containing Metakaolin after Elevated Temperature. KSCE J Civ Eng 2019;23:2997–3004. https://doi.org/10.1007/s12205-019-1192-x.
[26] Fawzi NM, Aziz KI, Hama SM. Effect of Metakaolin on Properties of Lightweight Porcelinate Aggregate Concrete. J Eng 2023;19:439–52. https://doi.org/10.31026/j.eng.2013.04.02.
[27] Okamura H, Ozawa K, Ouchi M. Self-compacting concrete. Struct Concr 2000;1:3–17.
[28] Okamura H, Ouchi M. Self-compacting concrete. J Adv Concr Technol 2003;1:5–15.
[29] Hubertová M. Self compacting light concrete with liapor aggregates. Proc. Int. Conf. Young Res. Forum, Thomas Telford Publishing; 2005, p. 103–12.
[30] Ouchi M. Development , Applications and Investigations of Self-Compacting Concrete. Int Work 2000;23:2–4.
[31] Mehta PK. Pozzolanic and cementitious byproducts as mineral admixtures for concrete - A critical review. Am Concr Institute, ACI Spec Publ 1983;SP-079:1–46.
[32] EFNARC. Specification and Guidelines for Self-Compacting Concrete. vol. 44. 2002.
[33] Ambroise J, Murat M, Péra J. Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions. Cem Concr Res 1985;15:261–8. https://doi.org/10.1016/0008-8846(85)90037-7.
[34] Poon CS, Ho DWS. A feasibility study on the utilization of r-FA in SCC. Cem Concr Res 2004;34:2337–9. https://doi.org/10.1016/j.cemconres.2004.02.013.
[35] Alahverdi A, Mehrpour K, Najafikani E. Taftan pozzolan-based geopolymer cement 2008;19:1–5.
[36] Yahia A, Tanimura M, Shimoyama Y. Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio. Cem Concr Res 2005;35:532–9. https://doi.org/10.1016/j.cemconres.2004.05.008.
[37] Zhu W, Gibbs JC, Bartos PJM. Uniformity of in situ properties of self-compacting concrete in full-scale structural elements. Cem Concr Compos 2001;23:57–64. https://doi.org/10.1016/S0958-9465(00)00053-6.
[38] Nagaraj A, Girish S. Rheology of Fresh Concrete-a Review. J Rehabil Civ Eng 2021;9:118–31. https://doi.org/10.22075/jrce.2021.20557.1425.