[1] Wang J, Wu H, Tam VWY, Zuo J. Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China. J Clean Prod 2019;206:1004–14. https://doi.org/10.1016/j.jclepro.2018.09.170.
[2] Uddin MT, Chowdhury IM. Sustainable development of concrete construction materials in Bangladesh. 1st IUT Int. Semin. Sustain. Recycl. Durab. Concr., Gazipur, Bangladesh: Islamic University of Technology (IUT); 2014.
[3] Hasnat A, Das T, Ahsan R, Alam AT, Ahmed H. In-plane cyclic response of unreinforced masonry walls retrofitted with ferrocement. Case Stud Constr Mater 2022;17:e01630. https://doi.org/10.1016/j.cscm.2022.e01630.
[4] Hasnat A, Ahsan R, Yashin SM. Quasi-static in-plane behavior of full-scale unreinforced masonry walls retrofitted using ferro-cement overlay. Asian J Civ Eng 2022;23:649–64. https://doi.org/10.1007/s42107-022-00447-7.
[5] Kondraivendhan B, Pradhan B. Effect of ferrocement confinement on behavior of concrete. Constr Build Mater 2009;23:1218–22. https://doi.org/10.1016/j.conbuildmat.2008.08.004.
[6] Moazzenchi S, Vatani Oskouei A. A Comparative Experimental Study on the Flexural Behavior of Geopolymer Concrete Beams Reinforced with FRP Bars. J Rehabil Civ Eng 2023;11:21–42. https://doi.org/10.22075/jrce.2022.25157.1569.
[7] Qasim MF, Abbas ZK, Abed SK. Producing Green Concrete with Plastic Waste and Nano Silica Sand. Eng Technol Appl Sci Res 2021;11:7932–7. https://doi.org/10.48084/etasr.4593.
[8] Rouhanifar S, Afrazi M, Fakhimi A, Yazdani M. Strength and deformation behaviour of sand-rubber mixture. Int J Geotech Eng 2021;15:1078–92. https://doi.org/10.1080/19386362.2020.1812193.
[9] Fareghian M, Afrazi M, Fakhimi A. Soil reinforcement by waste tire textile fibers: small-scale experimental tests. J Mater Civ Eng 2023;35:4022402.
[10] Roknuzzaman M, Hossain MB, Sultana A, Shourov AA. Influence of Tire Chip Size on The Behavior of Rubberized Concrete. Civ Eng Beyond Limits 2021;2:18–22. https://doi.org/10.36937/cebel.2021.003.004.
[11] Khalhen IA, Aghayari R. Impact Resistance of Concrete Containing LLDPE– Waste Tire Rubber and Silica Fume. J Rehabil Civ Eng 2023;11:60–75. https://doi.org/10.22075/jrce.2022.23456.1511.
[12] Xiao J, Li J, Zhang C. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem Concr Res 2005;35:1187–94. https://doi.org/10.1016/j.cemconres.2004.09.020.
[13] McNeil K, Kang TH-K. Recycled Concrete Aggregates: A Review. Int J Concr Struct Mater 2013;7:61–9. https://doi.org/10.1007/s40069-013-0032-5.
[14] Amin AFMS, Hasnat A, Khan AH, Ashiquzzaman M. Residual Cementing Property in Recycled Fines and Coarse Aggregates: Occurrence and Quantification. J Mater Civ Eng 2016;28. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001472.
[15] Hossain MB, Islam MR, Roknuzzaman M. Effect of parent concrete strength on the strength of Recycled Aggregate Concrete. J Sci Technol 2017;15:34–9.
[16] Abbas A, Fathifazl G, Burkan Isgor O, Razaqpur AG, Fournier B, Foo S. Proposed Method for Determining the Residual Mortar Content of Recycled Concrete Aggregates. J ASTM Int 2008;5:1–12. https://doi.org/10.1520/JAI101087.
[17] Serker NK, Roknuzzaman M, Islam MR, Mithu MJH. Role of old mortar on the deterioration of properties in recycled local aggregates. 5th Annu. Pap. Meet 2nd Civ. Eng. Congr., Dhaka, Bangladesh: Instituion of Engineers, Bangladesh (IEB); 2022.
[18] Guo H, Shi C, Guan X, Zhu J, Ding Y, Ling T-C, et al. Durability of recycled aggregate concrete – A review. Cem Concr Compos 2018;89:251–9. https://doi.org/10.1016/j.cemconcomp.2018.03.008.
[19] Thomas C, Setién J, Polanco JA, Alaejos P, Sánchez de Juan M. Durability of recycled aggregate concrete. Constr Build Mater 2013;40:1054–65. https://doi.org/10.1016/j.conbuildmat.2012.11.106.
[20] G. S V, Ghorpade VG, Sudarsana Rao H. The Behaviour of Self Compacting Concrete With Waste Plastic Fibers When Subjected To Chloride Attack. Mater Today Proc 2018;5:1501–8. https://doi.org/10.1016/j.matpr.2017.11.239.
[21] Liu Z, Hansen W. Pore damage in cementitious binders caused by deicer salt frost exposure. Constr Build Mater 2015;98:204–16. https://doi.org/10.1016/j.conbuildmat.2015.06.066.
[22] Penttala V. Surface and internal deterioration of concrete due to saline and non-saline freeze–thaw loads. Cem Concr Res 2006;36:921–8. https://doi.org/10.1016/j.cemconres.2005.10.007.
[23] Valenza JJ, Scherer GW. A review of salt scaling: II. Mechanisms. Cem Concr Res 2007;37:1022–34. https://doi.org/10.1016/j.cemconres.2007.03.003.
[24] Wang Y, Ueda T, Gong F, Zhang D. Meso-scale mechanical deterioration of mortar due to sodium chloride attack. Cem Concr Compos 2019;96:163–73. https://doi.org/10.1016/j.cemconcomp.2018.11.021.
[25] Al-Amoudi OSB, Maslehuddin M, Abdul-Al YAB. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments. Constr Build Mater 1995;9:25–33. https://doi.org/10.1016/0950-0618(95)92857-D.
[26] Lawrence CD. Sulphate attack on concrete. Mag Concr Res 1990;42:249–64. https://doi.org/10.1680/macr.1990.42.153.249.
[27] Basista M, Weglewski W. Micromechanical modeling of sulphate corrosion in concrete: Influence of ettringite forming reaction. Theor Appl Mech 2008;35:29–52. https://doi.org/10.2298/TAM0803029B.
[28] Ramezanianpour AA, Riahi Dehkordi E, Ramezanianpour AM. Influence of Sulfate Ions on Chloride Attack in Concrete Mortars Containing Silica Fume and Jajrood Trass. Iran J Sci Technol Trans Civ Eng 2020;44:1135–44. https://doi.org/10.22060/CEEJ.2017.12315.5165.
[29] Zhao G, Li J, Shi M, Cui J, Xie F. Degradation of cast-in-situ concrete subjected to sulphate-chloride combined attack. Constr Build Mater 2020;241:117995. https://doi.org/10.1016/j.conbuildmat.2019.117995.
[30] ASTM. ASTM C33/33M-18 Standard Specification for Concrete Aggregates. 2018. https://doi.org/10.1520/C0033_C0033M-18.
[31] ASTM. ASTM C136/C136M-19: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. 2019. https://doi.org/10.1520/C0136_C0136M-19.
[32] ASTM. ASTM C128-15 Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. 2015. https://doi.org/10.1520/C0128-22.
[33] ASTM. ASTM C29/C29M-17a: Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. 2017. https://doi.org/10.1520/C0029_C0029M-17A.
[34] Bairagi NK, Vidyadhara HS, Ravande K. Mix design procedure for recycled aggregate concrete. Constr Build Mater 1990;4:188–93. https://doi.org/10.1016/0950-0618(90)90039-4.
[35] ACI. ACI 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. 1991.
[36] ACI. ACI 214R-11 Guide to Evaluation of Strength Test Results of Concrete, American Concrete Institute; 2011.
[37] ASTM. ASTM C39/C39M-14: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. 2014. https://doi.org/10.1520/C0039_C0039M-14.
[38] Hemmmati Pourghashti H, Madandous R, Ranjbar MM. Studying Tensile Strength of the Recycled Coarse Aggregate Concrete Using Double-Punch Test. J Rehabil Civ Eng 2022;10:100–20. https://doi.org/10.22075/jrce.2021.20395.1413.
[39] Al Ajmani H, Suleiman F, Abuzayed I, Tamimi A. Evaluation of Concrete Strength Made with Recycled Aggregate. Buildings 2019;9:56. https://doi.org/10.3390/buildings9030056.
[40] Roknuzzaman M, Serker NHMK. Pre-treatment of recycled aggregates by removing residual mortar: a case study on recycled brick aggregates from a demolished commercial building. J Technol 2023;38:51–64.
[41] Roknuzzaman M, Serker NHMK. Chemical Separation Techniques for Quantification of Residual Mortar Attached with Recycled Brick Aggregate. Int. Conf. Planning, Archit. Civ. Eng., Rajshahi, Bangladesh: Rajshahi University of Engineering & Technology; 2021.
[42] Chaudhary SK, Sinha AK. Effect of nano silica on acid, alkali and chloride resistance of concrete. Int J Civ Eng Technol 2018;9:853–61.
[43] Sotiriadis K, Nikolopoulou E, Tsivilis S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature. Cem Concr Compos 2012;34:903–10. https://doi.org/10.1016/j.cemconcomp.2012.05.006.