[1] Donev V, Hoffmann M. Optimisation of pavement maintenance and rehabilitation activities, timing and work zones for short survey sections and multiple distress types. Int J Pavement Eng 2020;21:583–607. https://doi.org/10.1080/10298436.2018.1502433.
[2] Kumar P, Parida M, Garg PK. Applicability of Multi Criteria Decision Making For Prioritization of Indian Roads. Highw Res J 2020;11.
[3] Ayalew GG, Meharie MG, Worku B. A road maintenance management strategy evaluation and selection model by integrating Fuzzy AHP and Fuzzy TOPSIS methods: The case of Ethiopian Roads Authority. Cogent Eng 2022;9. https://doi.org/10.1080/23311916.2022.2146628.
[4] Shelton J, Medina M. Integrated multiple-criteria decision-making method to prioritize transportation projects. Transp Res Rec 2010:51–7. https://doi.org/10.3141/2174-08.
[5] Ouma YO, Opudo J, Nyambenya S. Comparison of Fuzzy AHP and Fuzzy TOPSIS for Road Pavement Maintenance Prioritization: Methodological Exposition and Case Study. Adv Civ Eng 2015;2015. https://doi.org/10.1155/2015/140189.
[6] Saluja S, Gaur A, Abbas S. Assessment of Pavement Surface Quality using TOPSIS Method. IOP Conf Ser Earth Environ Sci 2021;796:6–12. https://doi.org/10.1088/1755-1315/796/1/012015.
[7] Pathan AI, Girish Agnihotri P, Said S, Patel D. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Environ Monit Assess 2022;194:509. https://doi.org/10.1007/s10661-022-10111-x.
[8] Abd El-Raof HS, Abd El-Hakim RT, El-Badawy SM, Afify HA. General Procedure for Pavement Maintenance/Rehabilitation Decisions Based on Structural and Functional Indices. In: Badawy S, Chen D-H, editors., Cham: Springer International Publishing; 2020, p. 13–24. https://doi.org/10.1007/978-3-030-34196-1_2.
[9] Naseri H, Shokoohi M, Jahanbakhsh H, Karimi MM, Waygood EOD. Novel Soft-Computing Approach to Better Predict Flexible Pavement Roughness. Transp Res Rec 2023;2677:246–59. https://doi.org/10.1177/03611981231161051.
[10] Chow M, Frangos D, Australia S. A Holistic Investment Prioritisation Framework for Road Assets. 2020.
[11] Sandamal RMK, Pasindu HR. Applicability of smartphone-based roughness data for rural road pavement condition evaluation. Int J Pavement Eng 2022;23:663–72. https://doi.org/10.1080/10298436.2020.1765243.
[12] Research, Legislative P. Demand for Grants 2023-24 Analysis: Road Transport and Highways. Delhi: n.d.
[13] AASHTO Guide for Design of Pavement Structures. vol. 1. Washington D.C.: American Association of State Highway and Transportation officials; 1993.
[14] Martin T, Choummanivong L. The Benefits of Long-Term Pavement Performance (LTPP) Research to Funders. Transp Res Procedia 2016;14:2477–86. https://doi.org/10.1016/j.trpro.2016.05.311.
[15] Guidebook for Data and Information Systems for Transportation Asset Management. 2021. https://doi.org/10.17226/26126.
[16] Baladi G, Dawson T, Musunuru G, Prohaska M, Kyle T. Pavement Performance Measures and Forecasting and the Effects of Maintenance and Rehabilitation Strategy on Treatment Effectiveness (Revised). Fhwa- Hrt-17-095 2017:1–329.
[17] Torres-Machi C, Nasir F, Achebe J, Saari R, Tighe SL. Sustainability Evaluation of Pavement Technologies through Multicriteria Decision Techniques. J Infrastruct Syst 2019;25:1–10. https://doi.org/10.1061/(asce)is.1943-555x.0000504.
[18] Hasan AE, Jaber FK. The Applicability of Multiple MCDM Techniques for Implementation in the Priority of Road Maintenance. J Eng 2023;29:106–25. https://doi.org/10.31026/j.eng.2023.10.07.
[19] Sayadinia S, Beheshtinia MA. Proposing a new hybrid multi-criteria decision-making approach for road maintenance prioritization. Int J Qual Reliab Manag 2020;38:1661–79. https://doi.org/10.1108/IJQRM-01-2020-0020.
[20] Kaya İ, Çolak M, Terzi F. Use of MCDM techniques for energy policy and decision-making problems: A review. Int J Energy Res 2018;42:2344–72. https://doi.org/10.1002/er.4016.
[21] Nautiyal A, Sharma S. Scientific approach using AHP to prioritize low volume rural roads for pavement maintenance. J Qual Maint Eng 2022;28:411–29. https://doi.org/10.1108/JQME-12-2019-0111.
[22] Perla B, Ramesh DA. Development of Roughness Index Model For Urban Roads Using Machine Learning Techniques and Prioritizing Using MCDM Techniques. SSRN Electron J 2022:1–13. https://doi.org/10.2139/ssrn.4160025.
[23] Duleba S, Szádoczki Z. Comparing aggregation methods in large-scale group AHP: Time for the shift to distance-based aggregation. Expert Syst Appl 2022;196. https://doi.org/10.1016/j.eswa.2022.116667.
[24] Sirin O, Gunduz M, Shamiyeh ME. Application of analytic hierarchy process (AHP) for sustainable pavement performance management in Qatar. Eng Constr Archit Manag 2020;28:3106–22. https://doi.org/10.1108/ECAM-02-2020-0136.
[25] Gowda S, Kavitha G, Gupta A. Economic Analysis and Prioritisation of Non-core Roads in India: A Case Study. Int J Pavement Res Technol 2022. https://doi.org/10.1007/s42947-022-00250-2.
[26] Kumar P, Sharma M. Modified pavement condition assessment model for asphalt concrete pavements. Int J Syst Assur Eng Manag 2023. https://doi.org/10.1007/s13198-023-02102-z.
[27] Singh AP, Sharma A, Mishra R, Wagle M, Sarkar AK. Pavement condition assessment using soft computing techniques. Int J Pavement Res Technol 2018;11:564–81. https://doi.org/10.1016/j.ijprt.2017.12.006.
[28] Malek MS, Gundaliya PJ. Negative factors in implementing public–private partnership in Indian road projects. Int J Constr Manag 2023;23:234–42. https://doi.org/10.1080/15623599.2020.1857672.
[29] Rejani VU, Janani L, Venkateswaralu K, Sunitha V, Mathew S. Strategic Pavement Maintenance and Rehabilitation Analysis of Urban Road Network Using HDM-4. Int J Pavement Res Technol 2023;16:927–42. https://doi.org/10.1007/s42947-022-00171-0.
[30] MORTH. Pradhan Mantri Gram Sadak Yojana. New Delhi: 2012.
[31] Abbaszadeh H, Daneshfaraz R, Sume V, Abraham J. Experimental investigation and application of soft computing models for predicting flow energy loss in arc-shaped constrictions. AQUA — Water Infrastructure, Ecosyst Soc 2024;73:637–61. https://doi.org/10.2166/aqua.2024.010.
[32] Miller JS, Bellinger WY. FHWA, Distress Identification manual for the Long-Term Pavement Performance Program. Report FHWA-HRT-13-092. Fed Highw Adm 2014:142.
[33] Chang G, Gilliland A, Rada GR, Serigos PA, Simpson AL, Kouchaki S. Successful Practices for Quality Management of Pavement Surface Condition Data Collection and Analysis Phase I: Task 2-Document of Successful Practices 2020:188.
[34] Peterson DE. Pavement management Practices Synthesis : 135. Transportation research Board, National research council; 1987.
[35] Hashemi A, Dowlatshahi MB, Nezamabadi-pour H. MFS-MCDM: Multi-label feature selection using multi-criteria decision making. Knowledge-Based Syst 2020;206:106365. https://doi.org/10.1016/j.knosys.2020.106365.
[36] Saaty RW. The analytic hierarchy process-what it is and how it is used. Math Model 1987;9:161–76. https://doi.org/10.1016/0270-0255(87)90473-8.
[37] Prakasan AC, Tiwari D, Shah YU, Parida M. Pavement maintenance prioritization of urban roads using analytical hierarchy process. Int J Pavement Res Technol 2015;8:112–22. https://doi.org/10.6135/ijprt.org.tw/2015.8(2).112.
[38] Ahmed S, Vedagiri P, Krishna Rao K V. Prioritization of pavement maintenance sections using objective based Analytic Hierarchy Process. Int J Pavement Res Technol 2017;10:158–70. https://doi.org/10.1016/j.ijprt.2017.01.001.
[39] Farhan J, Fwa TF. Pavement Maintenance Prioritization Using Analytic Hierarchy Process. Transp Res Rec J Transp Res Board 2009;2093:12–24. https://doi.org/10.3141/2093-02.
[40] Owen M. Process for Setting Intervention Criteria and Allocating Budgets: Process Description and Application. 2006.
[41] Deng Y, Shi X. Development of predictive models of asphalt pavement distresses in Idaho through gene expression programming. Neural Comput Appl 2022;34:14913–27. https://doi.org/10.1007/s00521-022-07305-2.
[42] Qiu S, Xiao DX, Huang S, Li L, Wang KCP. A Data-Driven Method for Comprehensive Pavement-Condition Ranking. J Infrastruct Syst 2016;22:1–8. https://doi.org/10.1061/(asce)is.1943-555x.0000279.
[43] Indian Roads Congress. Code of Practice for Maintenance of Bituminous Road Surfaces Indian Roads Congress IRC:82-2015. 2015.
[44] Liao C-N, Kao H-P. An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management. Expert Syst Appl 2011;38:10803–11. https://doi.org/10.1016/j.eswa.2011.02.031.
[45] Behzadian M, Khanmohammadi Otaghsara S, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Syst Appl 2012;39:13051–69. https://doi.org/10.1016/j.eswa.2012.05.056.
[46] Hwang C-L, Yoon K. Multiple Attribute Decision Making. vol. 186. Berlin, Heidelberg: Springer Berlin Heidelberg; 1981. https://doi.org/10.1007/978-3-642-48318-9.
[47] Chen S-J, Hwang C-L. Fuzzy Multiple Attribute Decision Making. vol. 375. Berlin, Heidelberg: Springer Berlin Heidelberg; 1992. https://doi.org/10.1007/978-3-642-46768-4.
[48] Yoon K. A Reconciliation Among Discrete Compromise Solutions. J Oper Res Soc 1987;38:277–86. https://doi.org/10.1057/jors.1987.44.
[49] Greene R, Devillers R, Luther JE, Eddy BG. GIS-Based Multiple-Criteria Decision Analysis. Geogr Compass 2011;5:412–32. https://doi.org/10.1111/j.1749-8198.2011.00431.x.
[50] Goepel KD. Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach. Int J Inf Technol Decis Mak 2019;18:445–63. https://doi.org/10.1142/S0219622019500044.
[51] Saaty T. The analytic hierarchy process (AHP) for decision making. Kobe, Japan, vol. 1, 1980, p. 69.
[52] Farhan J, Fwa TF. Use of analytic hierarchy process to prioritize network-level maintenance of pavement segments with multiple distresses. Transp Res Rec 2011:11–20. https://doi.org/10.3141/2225-02.
[53] Farhan J, Fwa TF. Incorporating Priority Preferences into Pavement Maintenance Programming. J Transp Eng 2012;138:714–22. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000372.
[54] AgriMetSoft. Index of agreement n.d.
[55] Karballaeezadeh N, Danial MS, Moazemi D, Band SS, Mosavi A, Reuter U. Smart structural health monitoring of flexible pavements using machine learning methods. Coatings 2020;10:1–18. https://doi.org/doi.org/10.20944/preprints202004.0029.v1.