[1] M. A. T. Mustafa, I. Hanafi, R. Mahmoud, and B. A. Tayeh, “Effect of partial replacement of sand by plastic waste on impact resistance of concrete: experiment and simulation,” Structures, vol. 20, no. April, pp. 519–526, 2019, doi: 10.1016/j.istruc.2019.06.008.
[2] A. Kumbasaroglu and E. Korkmaz, “Effect of Longitudinal Circular Hollows on the Flexural Strength of Reinforced Concrete Beams,” KSCE J. Civ. Eng., vol. 28, no. 1, pp. 275–287, 2024, doi: 10.1007/s12205-023-0424-2.
[3] M. C. Sundarraja and G. G. Prabhu, “Flexural behaviour of CFST members strengthened using CFRP composites,” Steel Compos. Struct., vol. 15, no. 6, pp. 623–643, 2013, doi: 10.12989/scs.2013.15.6.623.
[4] M. M. Shirmardi and M. R. Mohammadizadeh, “Numerical Study on the Flexural Behaviour of Concrete Beams Reinforced by GFRP Bars,” J. Rehabil. Civ. Eng., vol. 7, no. 4, pp. 88–99, 2019, doi: 10.22075/JRCE.2018.14701.1268.
[5] S. Moazzenchi and A. V. Oskouei, “A Comparative Experimental Study on the Flexural Behavior of Geopolymer Concrete Beams Reinforced with FRP Bars,” J. Rehabil. Civ. Eng., vol. 11, no. 1, pp. 21–42, 2023, doi: 10.22075/JRCE.2022.25157.1569.
[6] K. Turk, C. Kina, and E. Oztekin, “Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC,” Adv. Concr. Constr., vol. 10, no. 3, pp. 257–269, 2020, doi: 10.12989/acc.2020.10.3.257.
[7] M. K. Al-Kamal, “Nominal flexural strength of high-strength concrete beams,” Adv. Concr. Constr., vol. 7, no. 1, pp. 1–9, 2019, doi: 10.12989/acc.2019.7.1.001.
[8] H. Du, X. Hu, D. Shi, and W. Xue, “Flexural Performance of Composite Beams Using High-Strength Steel and High-Strength Concrete,” Int. J. Steel Struct., vol. 22, no. 1, pp. 27–41, 2022, doi: 10.1007/s13296-021-00558-y.
[9] W. : Www, M. L. Anoop Kumar, I. V Ramana Reddy, and C. Sasidhar, “International Journal of Emerging Technology and Advanced Engineering Experimental Investigations on The Flexural Strength of PET Reinforced Concrete,” 2008.
[10] M. K. Talukder and M. N. Haque, “Experimental investigation of flexural capacity and deflection of low strength RCC beam strengthened with flexural steels and steel shear key,” Asian J. Civ. Eng., vol. 24, no. 1, pp. 29–56, 2023, doi: 10.1007/s42107-022-00484-2.
[11] D. Y. Yoo and Y. S. Yoon, “A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete,” Int. J. Concr. Struct. Mater., vol. 10, no. 2, pp. 125–142, Jun. 2016, doi: 10.1007/S40069-016-0143-X.
[12] A. O. Dawood and H. M. Adnan, “Experimental Investigation of Using PET Wastes as Tension Bars in Reinforced Concrete Beams,” J. Univ. Babylon Eng. Sci., vol. 27, no. 1, pp. 247–261, 2019, doi: 10.29196/jubes.v27i1.1993.
[13] H. M. Adnan and A. O. Dawood, “Strength behavior of reinforced concrete beam using re-cycle of PET wastes as synthetic fibers,” Case Stud. Constr. Mater., vol. 13, p. e00367, 2020, doi: 10.1016/j.cscm.2020.e00367.
[14] R. S. Falih, A. O. Dawood, and H. Al-Khazraji, “Structural behaviour of concrete beams reinforced with polyethylene terephthalate (PET) bottles wastes bars,” IOP Conf. Ser. Mater. Sci. Eng., vol. 928, no. 2, 2020, doi: 10.1088/1757-899X/928/2/022033.
[15] M. Alshannag, M. Alshmalani, A. Alsaif, and M. Higazey, “Flexural performance of high-strength lightweight concrete beams made with hybrid fibers,” Case Stud. Constr. Mater., vol. 18, p. e01861, Jul. 2023, doi: 10.1016/J.CSCM.2023.E01861.
[16] A. A. Mohammed and A. A. F. Rahim, “Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber,” Constr. Build. Mater., vol. 244, p. 118350, May 2020, doi: 10.1016/J.CONBUILDMAT.2020.118350.
[17] W. A. Abdullah, H. U. Ahmed, Y. M. Alshkane, D. B. Rahman, A. O. Ali, and S. S. Abubakr, “The possibility of using waste PET plastic strip to enhance the flexural capacity of concrete beams,” J. Eng. Res., vol. 9, 2021, doi: 10.36909/jer.v9iICRIE.11649.
[18] C. Daniel, R. O. Onchiri, and B. O. Omondi, “Structural behaviour of reinforced concrete beams containing recycled polyethylene terephthalate and sugarcane bagasse ash,” Appl. Eng. Sci., vol. 18, no. January, p. 100178, 2024, doi: 10.1016/j.apples.2024.100178.
[19] Y. L. Bai, W. Q. Niu, W. J. Xie, and W. Y. Gao, “Flexural behavior of reinforced concrete beams strengthened with hybrid carbon-PET FRP laminates,” Constr. Build. Mater., vol. 411, p. 134372, Jan. 2024, doi: 10.1016/J.CONBUILDMAT.2023.134372.
[20] W. Mansour and S. Fayed, “Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers,” Steel Compos. Struct., vol. 41, no. 3, pp. 317–334, 2021, doi: 10.12989/scs.2021.41.3.317.
[21] A. Al-Shwaiter, H. Awang, and M. A. Khalaf, “Performance of sustainable lightweight foam concrete prepared using palm oil fuel ash as a sand replacement,” Constr. Build. Mater., vol. 322, Mar. 2022, doi: 10.1016/j.conbuildmat.2022.126482.
[22] N. A. Abdulla, “Using the artificial neural network to predict the axial strength and strain of concrete-filled plastic tube,” J. Soft Comput. Civ. Eng., vol. 4, no. 2, pp. 62–84, 2020, doi: 10.22115/SCCE.2020.225161.1198.
[23] N. Abduljabar Abdulla, “Strength models for uPVC-confined concrete,” Constr. Build. Mater., vol. 310, no. October, p. 125070, 2021, doi: 10.1016/j.conbuildmat.2021.125070.
[24] A. A. Mohammed, I. I. Mohammed, and S. A. Mohammed, “Some properties of concrete with plastic aggregate derived from shredded PVC sheets,” Constr. Build. Mater., vol. 201, pp. 232–245, 2019, doi: 10.1016/j.conbuildmat.2018.12.145.
[25] A. A. Mohammed, M. A. Muhammad, and B. K. Mohammed, “Effect of PET waste fiber addition on flexural behavior of concrete beams reinforced with GFRP bars,” Case Stud. Constr. Mater., vol. 19, p. e02564, Dec. 2023, doi: 10.1016/J.CSCM.2023.E02564.
[26] J. Pablo Ojeda, “A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites,” Constr. Build. Mater., vol. 295, p. 123420, 2021, doi: 10.1016/j.conbuildmat.2021.123420.
[27] H. M. Adnan and A. O. Dawood, “Strength behavior of reinforced concrete beam using re-cycle of PET wastes as synthetic fibers,” Case Stud. Constr. Mater., vol. 13, p. e00367, Dec. 2020, doi: 10.1016/J.CSCM.2020.E00367.
[28] J. M. C. Ongpeng et al., “Strengthening rectangular columns using recycled PET bottle strips,” Eng. Sci. Technol. an Int. J., vol. 24, no. 2, pp. 405–413, 2021, doi: 10.1016/j.jestch.2020.07.006.
[29] Y. Lattif and O. Hamdy, “An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites,” Adv. Concr. Constr., vol. 13, no. 4, pp. 307–313, 2022, doi: 10.12989/acc.2022.13.4.307.
[30] N. Ganesan, P. Bindurania, and P. V. Indirab, “Flexural strengthening of RCC beams using FRPs and ferrocement-A comparative study,” Adv. Concr. Constr., vol. 10, no. 1, pp. 35–48, 2020, doi: 10.12989/acc.2020.10.1.035.
[31] A. Shiuly, T. Hazra, D. Sau, and D. Maji, “Performance and optimisation study of waste plastic aggregate based sustainable concrete – A machine learning approach,” Clean. Waste Syst., vol. 2, no. April, p. 100014, 2022, doi: 10.1016/j.clwas.2022.100014.
[32] F. K. Alqahtani, G. Ghataora, M. I. Khan, and S. Dirar, “Novel lightweight concrete containing manufactured plastic aggregate,” Constr. Build. Mater., vol. 148, pp. 386–397, 2017, doi: 10.1016/j.conbuildmat.2017.05.011.
[33] K. Ullah, M. Irshad Qureshi, A. Ahmad, and Z. Ullah, “Substitution potential of plastic fine aggregate in concrete for sustainable production,” Structures, vol. 35, no. January 2021, pp. 622–637, 2022, doi: 10.1016/j.istruc.2021.11.003.