[1] Nabati M, Gholizadeh S. PERFORMANCE-BASED OPTIMIZATION OF STEEL MOMENT FRAMES BY A MODIFIED NEWTON METAHEURISTIC ALGORITHM. Int J Optim Civ Eng 2023;13. https://doi.org/10.22068/ijoce.2023.13.2.548.
[2] Jahjouh M. An experience based artificial neural network in the design optimization of steel frames. Eng Res Express 2022;4:45031. https://doi.org/10.1088/2631-8695/aca6ce.
[3] Hasançebi O, Azad SK. An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Comput \& Struct 2012;110:167–79. https://doi.org/10.1016/j.compstruc.2012.07.014.
[4] Kaveh A, Zaerreza A. Reliability-based design optimization of the frame structures using the force method and SORA-DM framework. Structures 2022;45:814–27. https://doi.org/10.1016/j.istruc.2022.09.057.
[5] He J, Lin S, Li Y, Dong X, Chen S. Genetic Algorithm for Optimal Placement of Steel Plate Shear Walls for Steel Frames. Buildings 2022;12. https://doi.org/10.3390/buildings12060835.
[6] Hasançebi O, Carbas S. Bat inspired algorithm for discrete size optimization of steel frames. Adv Eng Softw 2014;67:173–85. https://doi.org/10.1016/j.advengsoft.2013.10.003.
[7] Le Thanh C, Sang-To T, Hoang-Le H-L, Danh T-T, Khatir S, Wahab MA. Combination of intermittent search strategy and an improve particle swarm optimization algorithm (IPSO) for damage detection of steel frame. Fract Struct Integr 2022;16:141–52. https://doi.org/10.3221/IGF-ESIS.59.11.
[8] Kaveh A, Azar BF, Hadidi A, Sorochi FR, Talatahari S. Performance-based seismic design of steel frames using ant colony optimization. J Constr Steel Res 2010;66:566–74. https://doi.org/10.1016/j.jcsr.2009.11.006.
[9] Kale BN, Aydougdu .Ibrahim, Demir E. Performance of the whale optimization algorithm in space steel frame optimization problems. Int. Conf. Harmon. Search Algorithm, 2020, p. 139–54. https://doi.org/10.1007/978-981-15-8603-3_13.
[10] Mam K, Douthe C, Le Roy R, Consigny F. Shape optimization of braced frames for tall timber buildings: Influence of semi-rigid connections on design and optimization process. Eng Struct 2020;216:110692. https://doi.org/10.1016/j.engstruct.2020.110692.
[11] Kociecki M, Adeli H. Shape optimization of free-form steel space-frame roof structures with complex geometries using evolutionary computing. Eng Appl Artif Intell 2015;38:168–82. https://doi.org/10.1016/j.engappai.2014.10.012.
[12] Van Mellaert R, Mela K, Tiainen T, Heinisuo M, Lombaert G, Schevenels M. Mixed-integer linear programming approach for global discrete sizing optimization of frame structures. Struct Multidiscip Optim 2018;57:579–93. https://doi.org/10.1007/s00158-017-1770-9.
[13] Saldaña-Robles AL, Bustos-Gaytán A, la Peña JA, Saldaña-Robles A, Alcántar-Camarena V, Balvant in-Garcia A, et al. Structural design of an agricultural backhoe using TA, FEA, RSM and ANN. Comput Electron Agric 2020;172:105278. https://doi.org/10.1016/j.compag.2020.105278.
[14] Sadeghpour A, Ozay G. Investigating the predictive capabilities of ANN, RSM, and ANFIS in assessing the collapse potential of RC structures. Arab J Sci Eng 2024:1–22. https://doi.org/10.1007/s13369-024-09618-x.
[15] Nouri Y, Ghanbari MA, Fakharian P. An integrated optimization and ANOVA approach for reinforcing concrete beams with glass fiber polymer. Decis Anal J 2024;11:100479. https://doi.org/10.1016/j.dajour.2024.100479.
[16] Maheri MR, Safari D. Topology optimization of bracing in steel structures by genetic algorithm. Fourth Int. Conf. Adv. Steel Struct., 2005, p. 277–82. https://doi.org/10.1016/B978-008044637-0/50040-8.
[17] Ben-Tal A, Brekelmans R, Den Hertog D, Vial J-P. Globalized robust optimization for nonlinear uncertain inequalities. INFORMS J Comput 2017;29:350–66. https://doi.org/10.1287/ijoc.2016.0735.
[18] Takezawa A, Nii S, Kitamura M, Kogiso N. Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 2011;200:2268–81. https://doi.org/10.1016/j.cma.2011.03.008.
[19] Sigmund O. Manufacturing tolerant topology optimization. Acta Mech Sin 2009;25:227–39. https://doi.org/10.1007/s10409-009-0240-zDesign optimization of steel structures considering uncertainties.
[20] Papadrakakis M, Lagaros ND, Plevris V. Design optimization of steel structures considering uncertainties. Eng Struct 2005;27:1408–18. https://doi.org/10.1016/j.engstruct.2005.04.002.
[21] Wang X, Shi Y, Meng Z, Yang B, Long K. Uncertainty-oriented topology optimization of dynamic structures considering hybrid uncertainty of probability and random field. Reliab Eng \& Syst Saf 2025;256:110744. https://doi.org/10.1016/j.ress.2024.110744.
[22] Hosseini P, Kaveh A, Hoseini Vaez SR. ROBUST DESIGN OPTIMIZATION OF SPACE TRUSS STRUCTURES. Int J Optim Civ Eng 2022;12.
[23] Yadav R, Ganguli R. Reliability based and robust design optimization of truss and composite plate using particle swarm optimization. Mech Adv Mater Struct 2022;29:1892–902. https://doi.org/10.1080/15376494.2020.1843743.
[24] Dammak K, Yaich A, Hami A El, Walha L, Haddar M. An efficient optimization based on the robust hybrid method for the coupled acoustic–structural system. Mech Adv Mater Struct 2020;27:1816–26. https://doi.org/10.1080/15376494.2018.1525629.
[25] Kamel A, Dammak K, Hami A El, Jdidia M Ben, Hammami L, Haddar M. A modified hybrid method for a reliability-based design optimization applied to an offshore wind turbine. Mech Adv Mater Struct 2022;29:1229–42. https://doi.org/10.1080/15376494.2020.1811927.
[26] Yarasca J, Mantari JL, Monge JC, Hinostroza MA. A robust five-unknowns higher-order deformation theory optimized via machine learning for functionally graded plates. Mech Adv Mater Struct 2024;31:10420–35. https://doi.org/10.1080/15376494.2024.2344037.
[27] Qu X, Haftka RT. Reliability-based design optimization using probabilistic sufficiency factor. Struct Multidiscip Optim 2004;27:314–25. https://doi.org/10.1007/s00158-004-0390-3.
[28] Ito M, Kim NH, Kogiso N. Conservative reliability index for epistemic uncertainty in reliability-based design optimization. Struct Multidiscip Optim 2018;57:1919–35. https://doi.org/10.1007/s00158-018-1903-9.
[29] Yonekura K, Kanno Y. Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 2010;11:355–79. https://doi.org/10.1007/s11081-010-9107-1.
[30] Hosseini P, Kaveh A, Fathali MA, Vaez SRH. A two-loop RBDO approach for steel frame structures using EVPS, GWO, and Monte Carlo simulation. Mech Adv Mater Struct 2025;32:605–24. https://doi.org/10.1080/15376494.2024.2352800.
[31] Taguchi G, Phadke MS. Quality Engineering through Design Optimization. In: Dehnad K, editor. Qual. Control. Robust Des. Taguchi Method, Boston, MA: Springer US; 1989, p. 77–96. https://doi.org/10.1007/978-1-4684-1472-1_5.
[32] Taguchi G. Introduction to quality engineering: designing quality into products and processes. 1986.
[33] Zaman K, McDonald M, Mahadevan S, Green L. Robustness-based design optimization under data uncertainty. Struct Multidiscip Optim 2011;44:183–97. https://doi.org/10.1007/s00158-011-0622-2.
[34] Parkinson A. Robust mechanical design using engineering models. J Mech Des 1995;117:48–54. https://doi.org/10.1115/1.2836470.
[35] Lagaros ND, Plevris V, Papadrakakis M. Neurocomputing strategies for solving reliability-robust design optimization problems. Eng Comput 2010;27:819–40. https://doi.org/10.1108/02644401011073674.
[36] Lagaros ND, Papadrakakis M. Robust seismic design optimization of steel structures. Struct Multidiscip Optim 2007;33:457–69. https://doi.org/10.1007/s00158-006-0047-5.
[37] Erfani T, Utyuzhnikov S V. Control of robust design in multiobjective optimization under uncertainties. Struct Multidiscip Optim 2012;45:247–56. https://doi.org/10.1007/s00158-011-0693-0.
[38] Chen W, Lewis K. Robust design approach for achieving flexibility in multidisciplinary design. AIAA J 1999;37:982–9. https://doi.org/10.2514/2.805.
[39] Chen W, Allen JK, Tsui K-L, Mistree F. A procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des 1996;118:478–85. https://doi.org/10.1115/1.2826915.
[40] Chi H-W, Bloebaum CL. Mixed variable optimization using Taguchi’s orthogonal arrays. Struct Optim 1996;12:147–52. https://doi.org/10.1007/BF01196949.
[41] Lee K-H, Eom I-S, Park G-J, Lee W-I. Robust design for unconstrained optimization problems using the Taguchi method. AIAA J 1996;34:1059–63. https://doi.org/10.2514/3.13187.
[42] Sandgren E, Cameron TM. Robust design optimization of structures through consideration of variation. Comput Struct 2002;80:1605–13. https://doi.org/10.1016/S0045-7949(02)00160-8.
[43] Doltsinis I, Kang Z. Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 2004;193:2221–37. https://doi.org/10.1016/j.cma.2003.12.055.
[44] Lagaros ND, Plevris V, Papadrakakis M. Multi-objective design optimization using cascade evolutionary computations. Comput Methods Appl Mech Eng 2005;194:3496–515. https://doi.org/10.1016/j.cma.2004.12.029.
[45] Beyer H-G, Sendhoff B. Robust optimization--a comprehensive survey. Comput Methods Appl Mech Eng 2007;196:3190–218. https://doi.org/10.1016/j.cma.2007.03.003.
[46] Kang Z, Bai S. On robust design optimization of truss structures with bounded uncertainties. Struct Multidiscip Optim 2013;47:699–714. https://doi.org/10.1007/s00158-012-0868-3.
[47] Liu Z, Atamturktur S, Juang CH. Performance based robust design optimization of steel moment resisting frames. J Constr Steel Res 2013;89:165–74. https://doi.org/10.1016/j.jcsr.2013.07.011.
[48] Zhao Z, Lv G, Xu Y. Facilitate the design of residential PV using reliability-based design optimization. Renew Energy 2025;240:122144. https://doi.org/10.1016/j.renene.2024.122144.
[49] Lyu M-Z, Yang J-S, Chen J-B, Li J. High-efficient non-iterative reliability-based design optimization based on the design space virtually conditionalized reliability evaluation method. Reliab Eng \& Syst Saf 2025;254:110646. https://doi.org/10.1016/j.ress.2024.110646.
[50] Chen J, Chen Z, Jiang W, Guo H, Chen L. A reliability-based design optimization strategy using quantile surrogates by improved PC-kriging. Reliab Eng \& Syst Saf 2025;253:110491. https://doi.org/10.1016/j.ress.2024.110491.
[51] Steinacker C, Paulsen M, Schröder M, Rich J. Robust design of bicycle infrastructure networks. Sci Rep 2025;15:15471. https://doi.org/10.1038/s41598-025-99976-9.
[52] Saffari H, Zahedi MJ, Ebrahimpour N, Soleymani A. The effect of earthquake characteristics on the seismic performance of steel moment resisting frames. Int J Steel Struct 2023;23:1431–46. https://doi.org/10.1007/s13296-023-00769-5.
[53] Bakhshinezhad S, Mansouri E, Jeong S-H. Machine Learning-Aided Performance-Based Optimal Design of Steel Moment-Resisting Frames Using NSGA-II. Nat Hazards Rev 2025;26:4025016. https://doi.org/10.1061/NHREFO.NHENG-2313.
[54] Roohbakhsh H, Vosoughi AR, Razmara Shooli A. Performance-Based Design Optimization of Corroded Special Moment--Resisting RC Frames. J Struct Des Constr Pract 2024;30:4024116. https://doi.org/10.1061/JSDCCC.SCENG-1602.
[55] Do B, Ohsaki M. Gaussian mixture model for robust design optimization of planar steel frames. Struct Multidiscip Optim 2021;63:137–60. https://doi.org/10.1007/s00158-020-02676-3.
[56] Do B, Ohsaki M, Yamakawa M. Bayesian optimization for robust design of steel frames with joint and individual probabilistic constraints. Eng Struct 2021;245:112859. https://doi.org/10.1016/j.engstruct.2021.112859.
[57] Zhang R, Hu S. Optimal design of self-centering braced frames with limited self-centering braces. J Build Eng 2024;88:109201. https://doi.org/10.1016/j.jobe.2024.109201.
[58] Soleymani A, Kontoni D-PN, Jahangir H. Random vibration-based investigation of required separation gap between adjacent buildings. Earthquakes Struct 2024;26:285–97. https://doi.org/10.12989/eas.2024.26.4.285.
[59] Soleymani A, Saffari H. A novel hybrid strong-back system to improve the seismic performance of steel braced frames. J Build Eng 2024;84:108482. https://doi.org/10.1016/j.jobe.2024.108482.
[60] Paknahd M, Hosseini P, Kaveh A, Hakim SJS. A SELF-ADAPTIVE ENHANCED VIBRATING PARTICLE SYSTEM ALGORITHM FOR STRUCTURAL OPTIMIZATION: APPLICATION TO ISCSO BENCHMARK PROBLEMS. Int J Optim Civ Eng 2025;15.
[61] Hosseini P, Kaveh A, Naghian A, Abedi A. OPTIMIZATION OF ARTIFICIAL STONE MIX DESIGN USING MICROSILICA AND ARTIFICIAL NEURAL NETWORKS. Int J Optim Civ Eng 2024;14. https://doi.org/10.22068/ijoce.2024.14.3.602.
[62] MATLAB. Version R2022a. Natick, Massachusetts, MathWorks Inc 2022.
[63] AISC. Resistance factor design specification for structural steel buildings. Am Inst Steel Constr Inc, Chicago, 2001.
[64] Kaveh A, Vaez SRH, Hosseini P. Simplified dolphin echolocation algorithm for optimum design of frame. Smart Struct Syst 2018;21:321–33. https://doi.org/10.12989/sss.2018.21.3.321.